Optimal. Leaf size=29 \[ \left (5-e^{2 e^{-x^4+\frac {4+3 x}{x}}}\right ) x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 62, normalized size of antiderivative = 2.14, number of steps used = 2, number of rules used = 1, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.019, Rules used = {2288} \begin {gather*} 5 x^2+\frac {4 e^{2 e^{\frac {-x^5+3 x+4}{x}}} \left (x^5+1\right )}{\frac {3-5 x^4}{x}-\frac {-x^5+3 x+4}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=5 x^2+\int e^{2 e^{\frac {4+3 x-x^5}{x}}} \left (-2 x+e^{\frac {4+3 x-x^5}{x}} \left (8+8 x^5\right )\right ) \, dx\\ &=5 x^2+\frac {4 e^{2 e^{\frac {4+3 x-x^5}{x}}} \left (1+x^5\right )}{\frac {3-5 x^4}{x}-\frac {4+3 x-x^5}{x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.87, size = 0, normalized size = 0.00 \begin {gather*} \int \left (10 x+e^{2 e^{\frac {4+3 x-x^5}{x}}} \left (-2 x+e^{\frac {4+3 x-x^5}{x}} \left (8+8 x^5\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 28, normalized size = 0.97 \begin {gather*} -x^{2} e^{\left (2 \, e^{\left (-\frac {x^{5} - 3 \, x - 4}{x}\right )}\right )} + 5 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 2 \, {\left (4 \, {\left (x^{5} + 1\right )} e^{\left (-\frac {x^{5} - e^{\left (\log \relax (3) + \log \relax (x)\right )} - 4}{x}\right )} - x\right )} e^{\left (2 \, e^{\left (-\frac {x^{5} - e^{\left (\log \relax (3) + \log \relax (x)\right )} - 4}{x}\right )}\right )} + 10 \, x\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 29, normalized size = 1.00
method | result | size |
default | \(-x^{2} {\mathrm e}^{2 \,{\mathrm e}^{-\frac {x^{5}-3 x -4}{x}}}+5 x^{2}\) | \(29\) |
risch | \(-x^{2} {\mathrm e}^{2 \,{\mathrm e}^{-\frac {x^{5}-3 x -4}{x}}}+5 x^{2}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 5 \, x^{2} - 2 \, \int {\left (x e^{\left (x^{4}\right )} - 4 \, {\left (x^{5} e^{3} + e^{3}\right )} e^{\frac {4}{x}}\right )} e^{\left (-x^{4} + 2 \, e^{\left (-x^{4} + \frac {4}{x} + 3\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.10, size = 24, normalized size = 0.83 \begin {gather*} -x^2\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^3\,{\mathrm {e}}^{4/x}\,{\mathrm {e}}^{-x^4}}-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.82, size = 22, normalized size = 0.76 \begin {gather*} - x^{2} e^{2 e^{\frac {- x^{5} + 3 x + 4}{x}}} + 5 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________