Optimal. Leaf size=26 \[ \frac {\log \left (x \left (1-e^{-e^{e^{7+x^2}}} \log (x)\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 1.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+e^{e^{e^{7+x^2}}}-\log (x)+2 e^{7+e^{7+x^2}+x^2} x^2 \log (x)+\left (-e^{e^{e^{7+x^2}}}+\log (x)\right ) \log \left (e^{-e^{e^{7+x^2}}} \left (e^{e^{e^{7+x^2}}} x-x \log (x)\right )\right )}{e^{e^{e^{7+x^2}}} x^2-x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 e^{7+e^{7+x^2}+x^2} \log (x)}{e^{e^{e^{7+x^2}}}-\log (x)}-\frac {1-e^{e^{e^{7+x^2}}}+\log (x)+e^{e^{e^{7+x^2}}} \log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )-\log (x) \log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )}{x^2 \left (e^{e^{e^{7+x^2}}}-\log (x)\right )}\right ) \, dx\\ &=2 \int \frac {e^{7+e^{7+x^2}+x^2} \log (x)}{e^{e^{e^{7+x^2}}}-\log (x)} \, dx-\int \frac {1-e^{e^{e^{7+x^2}}}+\log (x)+e^{e^{e^{7+x^2}}} \log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )-\log (x) \log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )}{x^2 \left (e^{e^{e^{7+x^2}}}-\log (x)\right )} \, dx\\ &=2 \int \frac {e^{7+e^{7+x^2}+x^2} \log (x)}{e^{e^{e^{7+x^2}}}-\log (x)} \, dx-\int \left (\frac {1}{x^2 \left (e^{e^{e^{7+x^2}}}-\log (x)\right )}+\frac {-1+\log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {e^{7+e^{7+x^2}+x^2} \log (x)}{e^{e^{e^{7+x^2}}}-\log (x)} \, dx-\int \frac {1}{x^2 \left (e^{e^{e^{7+x^2}}}-\log (x)\right )} \, dx-\int \frac {-1+\log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )}{x^2} \, dx\\ &=2 \int \frac {e^{7+e^{7+x^2}+x^2} \log (x)}{e^{e^{e^{7+x^2}}}-\log (x)} \, dx-\int \frac {1}{x^2 \left (e^{e^{e^{7+x^2}}}-\log (x)\right )} \, dx-\int \left (-\frac {1}{x^2}+\frac {\log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )}{x^2}\right ) \, dx\\ &=-\frac {1}{x}+2 \int \frac {e^{7+e^{7+x^2}+x^2} \log (x)}{e^{e^{e^{7+x^2}}}-\log (x)} \, dx-\int \frac {1}{x^2 \left (e^{e^{e^{7+x^2}}}-\log (x)\right )} \, dx-\int \frac {\log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 25, normalized size = 0.96 \begin {gather*} \frac {\log \left (x-e^{-e^{e^{7+x^2}}} x \log (x)\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 32, normalized size = 1.23 \begin {gather*} \frac {\log \left ({\left (x e^{\left (e^{\left (e^{\left (x^{2} + 7\right )}\right )}\right )} - x \log \relax (x)\right )} e^{\left (-e^{\left (e^{\left (x^{2} + 7\right )}\right )}\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, x^{2} e^{\left (x^{2} + e^{\left (x^{2} + 7\right )} + 7\right )} \log \relax (x) - {\left (e^{\left (e^{\left (e^{\left (x^{2} + 7\right )}\right )}\right )} - \log \relax (x)\right )} \log \left ({\left (x e^{\left (e^{\left (e^{\left (x^{2} + 7\right )}\right )}\right )} - x \log \relax (x)\right )} e^{\left (-e^{\left (e^{\left (x^{2} + 7\right )}\right )}\right )}\right ) + e^{\left (e^{\left (e^{\left (x^{2} + 7\right )}\right )}\right )} - \log \relax (x) - 1}{x^{2} e^{\left (e^{\left (e^{\left (x^{2} + 7\right )}\right )}\right )} - x^{2} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.22, size = 470, normalized size = 18.08
method | result | size |
risch | \(-\frac {\ln \left ({\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}\right )}{x}+\frac {-i \pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}} \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )\right )+i \pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}} \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}} \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )\right )^{2}-i \pi \mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}} \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )\right )^{3}+i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}} \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i x \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}\right )^{2}-i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}} \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i x \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}\right ) \mathrm {csgn}\left (i x \right )+i \pi \mathrm {csgn}\left (i x \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}\right )^{3}-2 i \pi \mathrm {csgn}\left (i x \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}\right )^{2}+i \pi \mathrm {csgn}\left (i x \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right ) {\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}\right )^{2} \mathrm {csgn}\left (i x \right )+2 i \pi +2 \ln \relax (x )+2 \ln \left (-{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x^{2}+7}}}+\ln \relax (x )\right )}{2 x}\) | \(470\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 33, normalized size = 1.27 \begin {gather*} -\frac {e^{\left (e^{\left (x^{2} + 7\right )}\right )} - \log \relax (x) - \log \left (e^{\left (e^{\left (e^{\left (x^{2} + 7\right )}\right )}\right )} - \log \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.42, size = 23, normalized size = 0.88 \begin {gather*} \frac {\ln \left (x-x\,{\mathrm {e}}^{-{\mathrm {e}}^{{\mathrm {e}}^{x^2}\,{\mathrm {e}}^7}}\,\ln \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 77.90, size = 29, normalized size = 1.12 \begin {gather*} \frac {\log {\left (\left (x e^{e^{e^{x^{2} + 7}}} - x \log {\relax (x )}\right ) e^{- e^{e^{x^{2} + 7}}} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________