Optimal. Leaf size=28 \[ \frac {1}{x}+\frac {9}{x \log \left (5 \left (x^2-4 \left (2+e^x\right ) x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-126+e^x (-72-36 x)+\left (-63-36 e^x\right ) \log \left (-35 x^2-20 e^x x^2\right )+\left (-7-4 e^x\right ) \log ^2\left (-35 x^2-20 e^x x^2\right )}{\left (7 x^2+4 e^x x^2\right ) \log ^2\left (-35 x^2-20 e^x x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1-\frac {18 \left (7+2 e^x (2+x)\right )}{\left (7+4 e^x\right ) \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}-\frac {9}{\log \left (-5 \left (7+4 e^x\right ) x^2\right )}}{x^2} \, dx\\ &=\int \left (\frac {63}{\left (7+4 e^x\right ) x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}+\frac {-18-9 x-9 \log \left (-5 \left (7+4 e^x\right ) x^2\right )-\log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}{x^2 \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}\right ) \, dx\\ &=63 \int \frac {1}{\left (7+4 e^x\right ) x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx+\int \frac {-18-9 x-9 \log \left (-5 \left (7+4 e^x\right ) x^2\right )-\log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}{x^2 \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx\\ &=63 \int \frac {1}{\left (7+4 e^x\right ) x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx+\int \frac {-1-\frac {9 (2+x)}{\log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}-\frac {9}{\log \left (-5 \left (7+4 e^x\right ) x^2\right )}}{x^2} \, dx\\ &=63 \int \frac {1}{\left (7+4 e^x\right ) x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx+\int \left (-\frac {1}{x^2}-\frac {9 (2+x)}{x^2 \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}-\frac {9}{x^2 \log \left (-5 \left (7+4 e^x\right ) x^2\right )}\right ) \, dx\\ &=\frac {1}{x}-9 \int \frac {2+x}{x^2 \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx-9 \int \frac {1}{x^2 \log \left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx+63 \int \frac {1}{\left (7+4 e^x\right ) x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx\\ &=\frac {1}{x}-9 \int \left (\frac {2}{x^2 \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}+\frac {1}{x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )}\right ) \, dx-9 \int \frac {1}{x^2 \log \left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx+63 \int \frac {1}{\left (7+4 e^x\right ) x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx\\ &=\frac {1}{x}-9 \int \frac {1}{x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx-9 \int \frac {1}{x^2 \log \left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx-18 \int \frac {1}{x^2 \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx+63 \int \frac {1}{\left (7+4 e^x\right ) x \log ^2\left (-5 \left (7+4 e^x\right ) x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 24, normalized size = 0.86 \begin {gather*} \frac {1}{x}+\frac {9}{x \log \left (-5 \left (7+4 e^x\right ) x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 36, normalized size = 1.29 \begin {gather*} \frac {\log \left (-20 \, x^{2} e^{x} - 35 \, x^{2}\right ) + 9}{x \log \left (-20 \, x^{2} e^{x} - 35 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 36, normalized size = 1.29 \begin {gather*} \frac {\log \left (-20 \, x^{2} e^{x} - 35 \, x^{2}\right ) + 9}{x \log \left (-20 \, x^{2} e^{x} - 35 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 37, normalized size = 1.32
method | result | size |
norman | \(\frac {9+\ln \left (-20 \,{\mathrm e}^{x} x^{2}-35 x^{2}\right )}{x \ln \left (-20 \,{\mathrm e}^{x} x^{2}-35 x^{2}\right )}\) | \(37\) |
risch | \(\frac {1}{x}-\frac {18 i}{x \left (\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+\frac {7}{4}\right )\right ) \mathrm {csgn}\left (i x^{2} \left ({\mathrm e}^{x}+\frac {7}{4}\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+\frac {7}{4}\right )\right ) \mathrm {csgn}\left (i x^{2} \left ({\mathrm e}^{x}+\frac {7}{4}\right )\right ) \mathrm {csgn}\left (i x^{2}\right )+\pi \mathrm {csgn}\left (i x^{2} \left ({\mathrm e}^{x}+\frac {7}{4}\right )\right )^{3}-2 \pi \mathrm {csgn}\left (i x^{2} \left ({\mathrm e}^{x}+\frac {7}{4}\right )\right )^{2}+\pi \mathrm {csgn}\left (i x^{2} \left ({\mathrm e}^{x}+\frac {7}{4}\right )\right )^{2} \mathrm {csgn}\left (i x^{2}\right )-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 \pi -2 i \ln \relax (5)-4 i \ln \relax (x )-2 i \ln \left ({\mathrm e}^{x}+\frac {7}{4}\right )\right )}\) | \(186\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 44, normalized size = 1.57 \begin {gather*} \frac {i \, \pi + \log \relax (5) + 2 \, \log \relax (x) + \log \left (4 \, e^{x} + 7\right ) + 9}{{\left (i \, \pi + \log \relax (5)\right )} x + 2 \, x \log \relax (x) + x \log \left (4 \, e^{x} + 7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\left (4\,{\mathrm {e}}^x+7\right )\,{\ln \left (-20\,x^2\,{\mathrm {e}}^x-35\,x^2\right )}^2+\left (36\,{\mathrm {e}}^x+63\right )\,\ln \left (-20\,x^2\,{\mathrm {e}}^x-35\,x^2\right )+{\mathrm {e}}^x\,\left (36\,x+72\right )+126}{{\ln \left (-20\,x^2\,{\mathrm {e}}^x-35\,x^2\right )}^2\,\left (4\,x^2\,{\mathrm {e}}^x+7\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 22, normalized size = 0.79 \begin {gather*} \frac {1}{x} + \frac {9}{x \log {\left (- 20 x^{2} e^{x} - 35 x^{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________