Optimal. Leaf size=32 \[ -x+(-4+\log (3 x)) \log (x+(i \pi +\log (3)) (x \log (2)-\log (x))) \]
________________________________________________________________________________________
Rubi [F] time = 3.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x+x^2-4 (i \pi +\log (3))+\left (4 x+x^2\right ) \log (2) (i \pi +\log (3))-x (i \pi +\log (3)) \log (x)+(i \pi -x+\log (3)-x \log (2) (i \pi +\log (3))) \log (3 x)+(-x-x \log (2) (i \pi +\log (3))+(i \pi +\log (3)) \log (x)) \log (x+x \log (2) (i \pi +\log (3))-(i \pi +\log (3)) \log (x))}{-x^2-x^2 \log (2) (i \pi +\log (3))+x (i \pi +\log (3)) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x+x^2-4 (i \pi +\log (3))+\left (4 x+x^2\right ) \log (2) (i \pi +\log (3))-x (i \pi +\log (3)) \log (x)+(i \pi -x+\log (3)-x \log (2) (i \pi +\log (3))) \log (3 x)+(-x-x \log (2) (i \pi +\log (3))+(i \pi +\log (3)) \log (x)) \log (x+x \log (2) (i \pi +\log (3))-(i \pi +\log (3)) \log (x))}{x^2 (-1-\log (2) (i \pi +\log (3)))+x (i \pi +\log (3)) \log (x)} \, dx\\ &=\int \frac {4 x+x^2-4 (i \pi +\log (3))+\left (4 x+x^2\right ) \log (2) (i \pi +\log (3))-x (i \pi +\log (3)) \log (x)+(i \pi -x+\log (3)-x \log (2) (i \pi +\log (3))) \log (3 x)+(-x-x \log (2) (i \pi +\log (3))+(i \pi +\log (3)) \log (x)) \log (x+x \log (2) (i \pi +\log (3))-(i \pi +\log (3)) \log (x))}{x (x (-1-\log (2) (i \pi +\log (3)))+(i \pi +\log (3)) \log (x))} \, dx\\ &=\int \left (\frac {4 i}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)}+\frac {i x}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)}+\frac {(4+x) \log (2) (\pi -i \log (3))}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)}+\frac {4 (-\pi +i \log (3))}{x \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )}+\frac {(-\pi +i \log (3)) \log (x)}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)}+\frac {(\pi -i \log (3)-x (\pi \log (2)-i (1+\log (2) \log (3)))) \log (3 x)}{x \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )}+\frac {\log (x (1+\log (2) (i \pi +\log (3)))-(i \pi +\log (3)) \log (x))}{x}\right ) \, dx\\ &=i \int \frac {x}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+4 i \int \frac {1}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx-(4 (\pi -i \log (3))) \int \frac {1}{x \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )} \, dx+(\log (2) (\pi -i \log (3))) \int \frac {4+x}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+(-\pi +i \log (3)) \int \frac {\log (x)}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+\int \frac {(\pi -i \log (3)-x (\pi \log (2)-i (1+\log (2) \log (3)))) \log (3 x)}{x \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )} \, dx+\int \frac {\log (x (1+\log (2) (i \pi +\log (3)))-(i \pi +\log (3)) \log (x))}{x} \, dx\\ &=i \int \frac {x}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+4 i \int \frac {1}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx-(4 (\pi -i \log (3))) \int \frac {1}{x \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )} \, dx+(\log (2) (\pi -i \log (3))) \int \left (\frac {4}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)}+\frac {x}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)}\right ) \, dx+(-\pi +i \log (3)) \int \left (\frac {1}{\pi -i \log (3)}+\frac {x (\pi \log (2)-i (1+\log (2) \log (3)))}{(\pi -i \log (3)) \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )}\right ) \, dx+\int \left (-\frac {i (1+\log (2) (i \pi +\log (3))) \log (3 x)}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)}+\frac {(\pi -i \log (3)) \log (3 x)}{x \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )}\right ) \, dx+\int \frac {\log (x (1+\log (2) (i \pi +\log (3)))-(i \pi +\log (3)) \log (x))}{x} \, dx\\ &=-x+i \int \frac {x}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+4 i \int \frac {1}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+(\pi -i \log (3)) \int \frac {\log (3 x)}{x \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )} \, dx-(4 (\pi -i \log (3))) \int \frac {1}{x \left (i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)\right )} \, dx+(\log (2) (\pi -i \log (3))) \int \frac {x}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+(4 \log (2) (\pi -i \log (3))) \int \frac {1}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx-(i (1+\log (2) (i \pi +\log (3)))) \int \frac {\log (3 x)}{-i x (1+\log (2) (i \pi +\log (3)))-\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+(-\pi \log (2)+i (1+\log (2) \log (3))) \int \frac {x}{i x (1+\log (2) (i \pi +\log (3)))+\pi \left (1-\frac {i \log (3)}{\pi }\right ) \log (x)} \, dx+\int \frac {\log (x (1+\log (2) (i \pi +\log (3)))-(i \pi +\log (3)) \log (x))}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.22, size = 153, normalized size = 4.78 \begin {gather*} -x+i \tan ^{-1}\left (\frac {\pi (-x \log (2)+\log (x))}{x+x \log (2) \log (3)-\log (3) \log (x)}\right ) (4+\log (x)-\log (3 x))+\log (x) \log (x+x \log (2) (i \pi +\log (3))-(i \pi +\log (3)) \log (x))-\frac {1}{2} (4+\log (x)-\log (3 x)) \log \left (x^2 \left (1+\pi ^2 \log ^2(2)+\log ^2(2) \log ^2(3)+\log (3) \log (4)\right )-x \left (\pi ^2 \log (4)+\log ^2(3) \log (4)+\log (9)\right ) \log (x)+\left (\pi ^2+\log ^2(3)\right ) \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.57, size = 37, normalized size = 1.16 \begin {gather*} {\left (\log \relax (3) + \log \relax (x) - 4\right )} \log \left (i \, \pi x \log \relax (2) + x \log \relax (3) \log \relax (2) + {\left (-i \, \pi - \log \relax (3)\right )} \log \relax (x) + x\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 66, normalized size = 2.06 \begin {gather*} {\left (\log \relax (3) - 4\right )} \log \left (\pi x \log \relax (2) - i \, x \log \relax (3) \log \relax (2) - \pi \log \relax (x) + i \, \log \relax (3) \log \relax (x) - i \, x\right ) + \log \left (i \, \pi x \log \relax (2) + x \log \relax (3) \log \relax (2) - i \, \pi \log \relax (x) - \log \relax (3) \log \relax (x) + x\right ) \log \relax (x) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.20, size = 98, normalized size = 3.06
method | result | size |
risch | \(\ln \relax (x ) \ln \left (-\left (\ln \relax (3)+i \pi \right ) \ln \relax (x )+x \left (\ln \relax (3)+i \pi \right ) \ln \relax (2)+x \right )-x +\ln \relax (3) \ln \left (\ln \relax (x )-\frac {x \left (-i \ln \relax (2) \ln \relax (3)-i+\pi \ln \relax (2)\right )}{\pi -i \ln \relax (3)}\right )-4 \ln \left (\ln \relax (x )-\frac {x \left (-i \ln \relax (2) \ln \relax (3)-i+\pi \ln \relax (2)\right )}{\pi -i \ln \relax (3)}\right )\) | \(98\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 38, normalized size = 1.19 \begin {gather*} {\left (\log \relax (3) + \log \relax (x) - 4\right )} \log \left ({\left (i \, \pi \log \relax (2) + \log \relax (3) \log \relax (2) + 1\right )} x + {\left (-i \, \pi - \log \relax (3)\right )} \log \relax (x)\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\Pi \,4{}\mathrm {i}-4\,x+4\,\ln \relax (3)+\ln \left (x-\ln \relax (x)\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )+x\,\ln \relax (2)\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )\right )\,\left (x-\ln \relax (x)\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )+x\,\ln \relax (2)\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )\right )-\ln \left (3\,x\right )\,\left (\Pi \,1{}\mathrm {i}-x+\ln \relax (3)-x\,\ln \relax (2)\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )\right )-x^2+x\,\ln \relax (x)\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )-\ln \relax (2)\,\left (x^2+4\,x\right )\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )}{x^2+x^2\,\ln \relax (2)\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )-x\,\ln \relax (x)\,\left (\ln \relax (3)+\Pi \,1{}\mathrm {i}\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 84.96, size = 75, normalized size = 2.34 \begin {gather*} - x + \log {\relax (x )} \log {\left (x \log {\relax (2 )} \log {\relax (3 )} + x + i \pi x \log {\relax (2 )} - \log {\relax (3 )} \log {\relax (x )} - i \pi \log {\relax (x )} \right )} + \left (-4 + \log {\relax (3 )}\right ) \log {\left (\frac {- x - x \log {\relax (2 )} \log {\relax (3 )} - i \pi x \log {\relax (2 )}}{\log {\relax (3 )} + i \pi } + \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________