Optimal. Leaf size=30 \[ \log \left (x+\frac {e^7-\frac {1}{2 x}+x-\log \left (6 e^{-x}\right )}{\log (4)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1-4 x^2-2 x^2 \log (4)}{x-2 e^7 x^2-2 x^3-2 x^3 \log (4)+2 x^2 \log \left (6 e^{-x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+x^2 (-4-2 \log (4))}{x-2 e^7 x^2-2 x^3-2 x^3 \log (4)+2 x^2 \log \left (6 e^{-x}\right )} \, dx\\ &=\int \frac {-1+x^2 (-4-2 \log (4))}{x-2 e^7 x^2+x^3 (-2-2 \log (4))+2 x^2 \log \left (6 e^{-x}\right )} \, dx\\ &=\int \left (\frac {1}{x \left (-1+2 e^7 x+2 x^2 (1+\log (4))-2 x \log \left (6 e^{-x}\right )\right )}+\frac {2 x (-2-\log (4))}{1-2 e^7 x-2 x^2 (1+\log (4))+2 x \log \left (6 e^{-x}\right )}\right ) \, dx\\ &=-\left ((2 (2+\log (4))) \int \frac {x}{1-2 e^7 x-2 x^2 (1+\log (4))+2 x \log \left (6 e^{-x}\right )} \, dx\right )+\int \frac {1}{x \left (-1+2 e^7 x+2 x^2 (1+\log (4))-2 x \log \left (6 e^{-x}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 37, normalized size = 1.23 \begin {gather*} -\log (x)+\log \left (1-2 e^7 x-2 x^2-x^2 \log (16)+2 x \log \left (6 e^{-x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.26, size = 30, normalized size = 1.00 \begin {gather*} \log \left (4 \, x^{2} \log \relax (2) + 4 \, x^{2} + 2 \, x e^{7} - 2 \, x \log \relax (6) - 1\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.81, size = 32, normalized size = 1.07 \begin {gather*} \log \left ({\left | 4 \, x^{2} \log \relax (2) + 4 \, x^{2} + 2 \, x e^{7} - 2 \, x \log \relax (6) - 1 \right |}\right ) - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 36, normalized size = 1.20
method | result | size |
norman | \(-\ln \relax (x )+\ln \left (4 x^{2} \ln \relax (2)+2 x \,{\mathrm e}^{7}+2 x^{2}-2 x \ln \left (6 \,{\mathrm e}^{-x}\right )-1\right )\) | \(36\) |
risch | \(\ln \left (\ln \left ({\mathrm e}^{x}\right )-\frac {i \left (4 i x^{2} \ln \relax (2)-2 i x \ln \relax (3)+2 i x \,{\mathrm e}^{7}-2 i x \ln \relax (2)+2 i x^{2}-i\right )}{2 x}\right )\) | \(47\) |
default | \(-\ln \relax (x )+\ln \left (4 x^{2} \ln \relax (2)+2 x \,{\mathrm e}^{7}+4 x^{2}-2 x \left (\ln \left (6 \,{\mathrm e}^{-x}\right )+\ln \left ({\mathrm e}^{x}\right )\right )+2 x \left (\ln \left ({\mathrm e}^{x}\right )-x \right )-1\right )\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 579, normalized size = 19.30 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.23, size = 30, normalized size = 1.00 \begin {gather*} \ln \left (4\,x\,\ln \relax (6)-4\,x\,{\mathrm {e}}^7-8\,x^2\,\ln \relax (2)-8\,x^2+2\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.18, size = 31, normalized size = 1.03 \begin {gather*} - \log {\relax (x )} + \log {\left (x^{2} + \frac {x \left (- \log {\relax (6 )} + e^{7}\right )}{2 \log {\relax (2 )} + 2} - \frac {1}{4 \log {\relax (2 )} + 4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________