Optimal. Leaf size=25 \[ x \left (5+\log \left (\frac {(x+\log (x))^2}{\left (-\frac {1}{x^2}+(3+x)^2\right )^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2-11 x+18 x^2+75 x^3+32 x^4+3 x^5+\left (-9+45 x^2+18 x^3+x^4\right ) \log (x)+\left (-x+9 x^3+6 x^4+x^5+\left (-1+9 x^2+6 x^3+x^4\right ) \log (x)\right ) \log \left (\frac {x^6+2 x^5 \log (x)+x^4 \log ^2(x)}{1-18 x^2-12 x^3+79 x^4+108 x^5+54 x^6+12 x^7+x^8}\right )}{-x+9 x^3+6 x^4+x^5+\left (-1+9 x^2+6 x^3+x^4\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+11 x-18 x^2-75 x^3-32 x^4-3 x^5-\left (-9+45 x^2+18 x^3+x^4\right ) \log (x)-\left (-1+9 x^2+6 x^3+x^4\right ) (x+\log (x)) \log \left (\frac {x^4 (x+\log (x))^2}{\left (-1+9 x^2+6 x^3+x^4\right )^2}\right )}{\left (1-9 x^2-6 x^3-x^4\right ) (x+\log (x))} \, dx\\ &=\int \left (-\frac {2}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))}-\frac {11 x}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))}+\frac {18 x^2}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))}+\frac {75 x^3}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))}+\frac {32 x^4}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))}+\frac {3 x^5}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))}+\frac {\left (-9+45 x^2+18 x^3+x^4\right ) \log (x)}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))}+\log \left (\frac {x^4 (x+\log (x))^2}{\left (-1+9 x^2+6 x^3+x^4\right )^2}\right )\right ) \, dx\\ &=-\left (2 \int \frac {1}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))} \, dx\right )+3 \int \frac {x^5}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))} \, dx-11 \int \frac {x}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))} \, dx+18 \int \frac {x^2}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))} \, dx+32 \int \frac {x^4}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))} \, dx+75 \int \frac {x^3}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))} \, dx+\int \frac {\left (-9+45 x^2+18 x^3+x^4\right ) \log (x)}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))} \, dx+\int \log \left (\frac {x^4 (x+\log (x))^2}{\left (-1+9 x^2+6 x^3+x^4\right )^2}\right ) \, dx\\ &=x \log \left (\frac {x^4 (x+\log (x))^2}{\left (1-9 x^2-6 x^3-x^4\right )^2}\right )-2 \int \left (\frac {1}{2 \left (-1+3 x+x^2\right ) (x+\log (x))}-\frac {1}{2 \left (1+3 x+x^2\right ) (x+\log (x))}\right ) \, dx+3 \int \left (-\frac {6}{x+\log (x)}+\frac {x}{x+\log (x)}+\frac {-33+109 x}{2 \left (-1+3 x+x^2\right ) (x+\log (x))}+\frac {-21-55 x}{2 \left (1+3 x+x^2\right ) (x+\log (x))}\right ) \, dx-11 \int \left (\frac {x}{2 \left (-1+3 x+x^2\right ) (x+\log (x))}-\frac {x}{2 \left (1+3 x+x^2\right ) (x+\log (x))}\right ) \, dx+18 \int \left (\frac {1-3 x}{2 \left (-1+3 x+x^2\right ) (x+\log (x))}+\frac {1+3 x}{2 \left (1+3 x+x^2\right ) (x+\log (x))}\right ) \, dx+32 \int \left (\frac {1}{x+\log (x)}+\frac {10-33 x}{2 \left (-1+3 x+x^2\right ) (x+\log (x))}+\frac {8+21 x}{2 \left (1+3 x+x^2\right ) (x+\log (x))}\right ) \, dx+75 \int \left (\frac {-3+10 x}{2 \left (-1+3 x+x^2\right ) (x+\log (x))}+\frac {-3-8 x}{2 \left (1+3 x+x^2\right ) (x+\log (x))}\right ) \, dx-\int -\frac {2 \left (1+3 x-9 x^2-15 x^3-x^4+x^5+2 \left (1+3 x^3+x^4\right ) \log (x)\right )}{\left (-1+9 x^2+6 x^3+x^4\right ) (x+\log (x))} \, dx+\int \left (\frac {-9+45 x^2+18 x^3+x^4}{-1+9 x^2+6 x^3+x^4}-\frac {x \left (-9+45 x^2+18 x^3+x^4\right )}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))}\right ) \, dx\\ &=x \log \left (\frac {x^4 (x+\log (x))^2}{\left (1-9 x^2-6 x^3-x^4\right )^2}\right )+\frac {3}{2} \int \frac {-33+109 x}{\left (-1+3 x+x^2\right ) (x+\log (x))} \, dx+\frac {3}{2} \int \frac {-21-55 x}{\left (1+3 x+x^2\right ) (x+\log (x))} \, dx+2 \int \frac {1+3 x-9 x^2-15 x^3-x^4+x^5+2 \left (1+3 x^3+x^4\right ) \log (x)}{\left (-1+9 x^2+6 x^3+x^4\right ) (x+\log (x))} \, dx+3 \int \frac {x}{x+\log (x)} \, dx-\frac {11}{2} \int \frac {x}{\left (-1+3 x+x^2\right ) (x+\log (x))} \, dx+\frac {11}{2} \int \frac {x}{\left (1+3 x+x^2\right ) (x+\log (x))} \, dx+9 \int \frac {1-3 x}{\left (-1+3 x+x^2\right ) (x+\log (x))} \, dx+9 \int \frac {1+3 x}{\left (1+3 x+x^2\right ) (x+\log (x))} \, dx+16 \int \frac {10-33 x}{\left (-1+3 x+x^2\right ) (x+\log (x))} \, dx+16 \int \frac {8+21 x}{\left (1+3 x+x^2\right ) (x+\log (x))} \, dx-18 \int \frac {1}{x+\log (x)} \, dx+32 \int \frac {1}{x+\log (x)} \, dx+\frac {75}{2} \int \frac {-3+10 x}{\left (-1+3 x+x^2\right ) (x+\log (x))} \, dx+\frac {75}{2} \int \frac {-3-8 x}{\left (1+3 x+x^2\right ) (x+\log (x))} \, dx+\int \frac {-9+45 x^2+18 x^3+x^4}{-1+9 x^2+6 x^3+x^4} \, dx-\int \frac {1}{\left (-1+3 x+x^2\right ) (x+\log (x))} \, dx+\int \frac {1}{\left (1+3 x+x^2\right ) (x+\log (x))} \, dx-\int \frac {x \left (-9+45 x^2+18 x^3+x^4\right )}{\left (-1+3 x+x^2\right ) \left (1+3 x+x^2\right ) (x+\log (x))} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 34, normalized size = 1.36 \begin {gather*} 5 x+x \log \left (\frac {x^4 (x+\log (x))^2}{\left (-1+9 x^2+6 x^3+x^4\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.26, size = 64, normalized size = 2.56 \begin {gather*} x \log \left (\frac {x^{6} + 2 \, x^{5} \log \relax (x) + x^{4} \log \relax (x)^{2}}{x^{8} + 12 \, x^{7} + 54 \, x^{6} + 108 \, x^{5} + 79 \, x^{4} - 12 \, x^{3} - 18 \, x^{2} + 1}\right ) + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.68, size = 64, normalized size = 2.56 \begin {gather*} -x \log \left (x^{8} + 12 \, x^{7} + 54 \, x^{6} + 108 \, x^{5} + 79 \, x^{4} - 12 \, x^{3} - 18 \, x^{2} + 1\right ) + x \log \left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}\right ) + 4 \, x \log \relax (x) + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.25, size = 844, normalized size = 33.76
method | result | size |
risch | \(5 x +4 x \ln \relax (x )-\frac {i \pi x \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )^{2}\right )^{3}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right )^{3}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i x^{4} \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right )^{3}}{2}-\frac {i \pi x \mathrm {csgn}\left (i x^{3}\right )^{3}}{2}+\frac {i \pi x \mathrm {csgn}\left (i \left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}\right )^{3}}{2}-\frac {i \pi x \mathrm {csgn}\left (i x^{4}\right )^{3}}{2}-\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}-2 x \ln \left (x^{4}+6 x^{3}+9 x^{2}-1\right )+2 x \ln \left (x +\ln \relax (x )\right )-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i x^{4} \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right ) \mathrm {csgn}\left (i x^{4}\right )}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )^{2}\right ) \mathrm {csgn}\left (\frac {i}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right )}{2}-\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )}{2}+i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )}{2}+i \pi x \,\mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )^{2}\right )^{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i x^{4} \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (\frac {i x^{4} \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right )^{2} \mathrm {csgn}\left (i x^{4}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}}{2}+\frac {i \pi x \mathrm {csgn}\left (i \left (x^{4}+6 x^{3}+9 x^{2}-1\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}\right )}{2}-i \pi x \,\mathrm {csgn}\left (i \left (x^{4}+6 x^{3}+9 x^{2}-1\right )\right ) \mathrm {csgn}\left (i \left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}\right )^{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (x +\ln \relax (x )\right )^{2}}{\left (x^{4}+6 x^{3}+9 x^{2}-1\right )^{2}}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \left (x +\ln \relax (x )\right )^{2}\right )}{2}\) | \(844\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 41, normalized size = 1.64 \begin {gather*} -2 \, x \log \left (x^{2} + 3 \, x + 1\right ) - 2 \, x \log \left (x^{2} + 3 \, x - 1\right ) + 2 \, x \log \left (x + \log \relax (x)\right ) + 4 \, x \log \relax (x) + 5 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.87, size = 62, normalized size = 2.48 \begin {gather*} x\,\left (\ln \left (\frac {x^6+2\,x^5\,\ln \relax (x)+x^4\,{\ln \relax (x)}^2}{x^8+12\,x^7+54\,x^6+108\,x^5+79\,x^4-12\,x^3-18\,x^2+1}\right )+5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.46, size = 102, normalized size = 4.08 \begin {gather*} 5 x + \left (x + \frac {1}{5}\right ) \log {\left (\frac {x^{6} + 2 x^{5} \log {\relax (x )} + x^{4} \log {\relax (x )}^{2}}{x^{8} + 12 x^{7} + 54 x^{6} + 108 x^{5} + 79 x^{4} - 12 x^{3} - 18 x^{2} + 1} \right )} - \frac {4 \log {\relax (x )}}{5} - \frac {2 \log {\left (x + \log {\relax (x )} \right )}}{5} + \frac {2 \log {\left (x^{4} + 6 x^{3} + 9 x^{2} - 1 \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________