Optimal. Leaf size=34 \[ \frac {\frac {4 \left (-1+e^{\frac {e^x}{\log (6)}}\right )}{x}+\frac {1}{5} \left (-x+x^2\right )}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (20+x^2-x^3\right ) \log (6)+\left (20-x^2+2 x^3\right ) \log (6) \log (x)+e^{\frac {e^x}{\log (6)}} \left (-20 \log (6)+\left (20 e^x x-20 \log (6)\right ) \log (x)\right )}{5 x^2 \log (6) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\left (20+x^2-x^3\right ) \log (6)+\left (20-x^2+2 x^3\right ) \log (6) \log (x)+e^{\frac {e^x}{\log (6)}} \left (-20 \log (6)+\left (20 e^x x-20 \log (6)\right ) \log (x)\right )}{x^2 \log ^2(x)} \, dx}{5 \log (6)}\\ &=\frac {\int \left (\frac {\log (6) \left (20+x^2-x^3+20 \log (x)-x^2 \log (x)+2 x^3 \log (x)\right )}{x^2 \log ^2(x)}+\frac {20 e^{\frac {e^x}{\log (6)}} \left (-\log (6)+e^x x \log (x)-\log (6) \log (x)\right )}{x^2 \log ^2(x)}\right ) \, dx}{5 \log (6)}\\ &=\frac {1}{5} \int \frac {20+x^2-x^3+20 \log (x)-x^2 \log (x)+2 x^3 \log (x)}{x^2 \log ^2(x)} \, dx+\frac {4 \int \frac {e^{\frac {e^x}{\log (6)}} \left (-\log (6)+e^x x \log (x)-\log (6) \log (x)\right )}{x^2 \log ^2(x)} \, dx}{\log (6)}\\ &=\frac {4 e^{\frac {e^x}{\log (6)}}}{x \log (x)}+\frac {1}{5} \int \left (\frac {20+x^2-x^3}{x^2 \log ^2(x)}+\frac {20-x^2+2 x^3}{x^2 \log (x)}\right ) \, dx\\ &=\frac {4 e^{\frac {e^x}{\log (6)}}}{x \log (x)}+\frac {1}{5} \int \frac {20+x^2-x^3}{x^2 \log ^2(x)} \, dx+\frac {1}{5} \int \frac {20-x^2+2 x^3}{x^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 33, normalized size = 0.97 \begin {gather*} \frac {-20+20 e^{\frac {e^x}{\log (6)}}-x^2+x^3}{5 x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 29, normalized size = 0.85 \begin {gather*} \frac {x^{3} - x^{2} + 20 \, e^{\left (\frac {e^{x}}{\log \relax (6)}\right )} - 20}{5 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.32, size = 58, normalized size = 1.71 \begin {gather*} \frac {{\left (x^{3} e^{x} \log \relax (6) - x^{2} e^{x} \log \relax (6) - 20 \, e^{x} \log \relax (6) + 20 \, e^{\left (\frac {x \log \relax (6) + e^{x}}{\log \relax (6)}\right )} \log \relax (6)\right )} e^{\left (-x\right )}}{5 \, x \log \relax (6) \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 73, normalized size = 2.15
method | result | size |
risch | \(\frac {x^{3} \ln \relax (2)+x^{3} \ln \relax (3)-x^{2} \ln \relax (2)-x^{2} \ln \relax (3)-20 \ln \relax (2)-20 \ln \relax (3)}{5 \left (\ln \relax (2)+\ln \relax (3)\right ) x \ln \relax (x )}+\frac {4 \,{\mathrm e}^{\frac {{\mathrm e}^{x}}{\ln \relax (2)+\ln \relax (3)}}}{\ln \relax (x ) x}\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\Gamma \left (-1, -\log \relax (x)\right ) \log \relax (6) - 2 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) \log \relax (6) - 20 \, \Gamma \left (-1, \log \relax (x)\right ) \log \relax (6) + 2 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) \log \relax (3) + 20 \, {\rm Ei}\left (-\log \relax (x)\right ) \log \relax (3) - {\rm Ei}\left (\log \relax (x)\right ) \log \relax (3) + 2 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) \log \relax (2) + 20 \, {\rm Ei}\left (-\log \relax (x)\right ) \log \relax (2) - {\rm Ei}\left (\log \relax (x)\right ) \log \relax (2) + \frac {20 \, {\left (\log \relax (3) + \log \relax (2)\right )} e^{\left (\frac {e^{x}}{\log \relax (3) + \log \relax (2)}\right )}}{x \log \relax (x)}}{5 \, \log \relax (6)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\frac {\ln \relax (6)\,\left (-x^3+x^2+20\right )}{5}-\frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{\ln \relax (6)}}\,\left (20\,\ln \relax (6)+\ln \relax (x)\,\left (20\,\ln \relax (6)-20\,x\,{\mathrm {e}}^x\right )\right )}{5}+\frac {\ln \relax (6)\,\ln \relax (x)\,\left (2\,x^3-x^2+20\right )}{5}}{x^2\,\ln \relax (6)\,{\ln \relax (x)}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 29, normalized size = 0.85 \begin {gather*} \frac {x^{3} - x^{2} - 20}{5 x \log {\relax (x )}} + \frac {4 e^{\frac {e^{x}}{\log {\relax (6 )}}}}{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________