Optimal. Leaf size=23 \[ \frac {e^{\frac {1}{25} \left (\frac {x}{3}+\log (x)\right )^2} x}{22+x} \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 69, normalized size of antiderivative = 3.00, number of steps used = 3, number of rules used = 3, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {27, 12, 2288} \begin {gather*} \frac {x^{2 x/75} e^{\frac {1}{225} \left (x^2+9 \log ^2(x)\right )} \left (x^3+25 x^2+3 \left (x^2+25 x+66\right ) \log (x)+66 x\right )}{(x+22)^2 \left (x+3 \log (x)+\frac {9 \log (x)}{x}+3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{225} \left (x^2+6 x \log (x)+9 \log ^2(x)\right )} \left (4950+132 x+50 x^2+2 x^3+\left (396+150 x+6 x^2\right ) \log (x)\right )}{225 (22+x)^2} \, dx\\ &=\frac {1}{225} \int \frac {e^{\frac {1}{225} \left (x^2+6 x \log (x)+9 \log ^2(x)\right )} \left (4950+132 x+50 x^2+2 x^3+\left (396+150 x+6 x^2\right ) \log (x)\right )}{(22+x)^2} \, dx\\ &=\frac {e^{\frac {1}{225} \left (x^2+9 \log ^2(x)\right )} x^{2 x/75} \left (66 x+25 x^2+x^3+3 \left (66+25 x+x^2\right ) \log (x)\right )}{(22+x)^2 \left (3+x+3 \log (x)+\frac {9 \log (x)}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.94, size = 33, normalized size = 1.43 \begin {gather*} \frac {e^{\frac {x^2}{225}+\frac {\log ^2(x)}{25}} x^{1+\frac {2 x}{75}}}{22+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 25, normalized size = 1.09 \begin {gather*} \frac {x e^{\left (\frac {1}{225} \, x^{2} + \frac {2}{75} \, x \log \relax (x) + \frac {1}{25} \, \log \relax (x)^{2}\right )}}{x + 22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{3} + 25 \, x^{2} + 3 \, {\left (x^{2} + 25 \, x + 66\right )} \log \relax (x) + 66 \, x + 2475\right )} e^{\left (\frac {1}{225} \, x^{2} + \frac {2}{75} \, x \log \relax (x) + \frac {1}{25} \, \log \relax (x)^{2}\right )}}{225 \, {\left (x^{2} + 44 \, x + 484\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 26, normalized size = 1.13
method | result | size |
norman | \(\frac {x \,{\mathrm e}^{\frac {\ln \relax (x )^{2}}{25}+\frac {2 x \ln \relax (x )}{75}+\frac {x^{2}}{225}}}{22+x}\) | \(26\) |
risch | \(\frac {x \,x^{\frac {2 x}{75}} {\mathrm e}^{\frac {\ln \relax (x )^{2}}{25}+\frac {x^{2}}{225}}}{22+x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 25, normalized size = 1.09 \begin {gather*} \frac {x e^{\left (\frac {1}{225} \, x^{2} + \frac {2}{75} \, x \log \relax (x) + \frac {1}{25} \, \log \relax (x)^{2}\right )}}{x + 22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.23, size = 25, normalized size = 1.09 \begin {gather*} \frac {x\,x^{\frac {2\,x}{75}}\,{\mathrm {e}}^{\frac {x^2}{225}+\frac {{\ln \relax (x)}^2}{25}}}{x+22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 26, normalized size = 1.13 \begin {gather*} \frac {x e^{\frac {x^{2}}{225} + \frac {2 x \log {\relax (x )}}{75} + \frac {\log {\relax (x )}^{2}}{25}}}{x + 22} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________