Optimal. Leaf size=18 \[ \frac {16 (54-2 \log (x))^2}{x^2}+5 \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 26, normalized size of antiderivative = 1.44, number of steps used = 7, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {14, 2304, 2305} \begin {gather*} \frac {46656}{x^2}+\frac {64 \log ^2(x)}{x^2}-\frac {3456 \log (x)}{x^2}+5 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-96768+5 x^2}{x^3}+\frac {7040 \log (x)}{x^3}-\frac {128 \log ^2(x)}{x^3}\right ) \, dx\\ &=-\left (128 \int \frac {\log ^2(x)}{x^3} \, dx\right )+7040 \int \frac {\log (x)}{x^3} \, dx+\int \frac {-96768+5 x^2}{x^3} \, dx\\ &=-\frac {1760}{x^2}-\frac {3520 \log (x)}{x^2}+\frac {64 \log ^2(x)}{x^2}-128 \int \frac {\log (x)}{x^3} \, dx+\int \left (-\frac {96768}{x^3}+\frac {5}{x}\right ) \, dx\\ &=\frac {46656}{x^2}+5 \log (x)-\frac {3456 \log (x)}{x^2}+\frac {64 \log ^2(x)}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 26, normalized size = 1.44 \begin {gather*} \frac {46656}{x^2}+5 \log (x)-\frac {3456 \log (x)}{x^2}+\frac {64 \log ^2(x)}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 22, normalized size = 1.22 \begin {gather*} \frac {{\left (5 \, x^{2} - 3456\right )} \log \relax (x) + 64 \, \log \relax (x)^{2} + 46656}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 26, normalized size = 1.44 \begin {gather*} \frac {64 \, \log \relax (x)^{2}}{x^{2}} - \frac {3456 \, \log \relax (x)}{x^{2}} + \frac {46656}{x^{2}} + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 24, normalized size = 1.33
method | result | size |
norman | \(\frac {46656+5 x^{2} \ln \relax (x )+64 \ln \relax (x )^{2}-3456 \ln \relax (x )}{x^{2}}\) | \(24\) |
default | \(\frac {64 \ln \relax (x )^{2}}{x^{2}}-\frac {3456 \ln \relax (x )}{x^{2}}+\frac {46656}{x^{2}}+5 \ln \relax (x )\) | \(27\) |
risch | \(\frac {64 \ln \relax (x )^{2}}{x^{2}}-\frac {3456 \ln \relax (x )}{x^{2}}+\frac {5 x^{2} \ln \relax (x )+46656}{x^{2}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 34, normalized size = 1.89 \begin {gather*} \frac {32 \, {\left (2 \, \log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )}}{x^{2}} - \frac {3520 \, \log \relax (x)}{x^{2}} + \frac {46624}{x^{2}} + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.03, size = 16, normalized size = 0.89 \begin {gather*} 5\,\ln \relax (x)+\frac {64\,{\left (\ln \relax (x)-27\right )}^2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 27, normalized size = 1.50 \begin {gather*} 5 \log {\relax (x )} + \frac {64 \log {\relax (x )}^{2}}{x^{2}} - \frac {3456 \log {\relax (x )}}{x^{2}} + \frac {46656}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________