Optimal. Leaf size=18 \[ e^{2+\frac {x}{\left (1+\frac {1}{x}+x\right )^2}}-x \]
________________________________________________________________________________________
Rubi [F] time = 6.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1-3 x-6 x^2-7 x^3-6 x^4-3 x^5-x^6+\exp \left (\frac {2+4 x+6 x^2+5 x^3+2 x^4}{1+2 x+3 x^2+2 x^3+x^4}\right ) \left (3 x^2+x^3-x^4\right )}{1+3 x+6 x^2+7 x^3+6 x^4+3 x^5+x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1-3 x-6 x^2-7 x^3-6 x^4-3 x^5-x^6+e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} x^2 \left (3+x-x^2\right )}{\left (1+x+x^2\right )^3} \, dx\\ &=\int \left (-\frac {1}{\left (1+x+x^2\right )^3}-\frac {3 x}{\left (1+x+x^2\right )^3}-\frac {6 x^2}{\left (1+x+x^2\right )^3}-\frac {7 x^3}{\left (1+x+x^2\right )^3}-\frac {6 x^4}{\left (1+x+x^2\right )^3}-\frac {3 x^5}{\left (1+x+x^2\right )^3}-\frac {x^6}{\left (1+x+x^2\right )^3}+\frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} x^2 \left (3+x-x^2\right )}{\left (1+x+x^2\right )^3}\right ) \, dx\\ &=-\left (3 \int \frac {x}{\left (1+x+x^2\right )^3} \, dx\right )-3 \int \frac {x^5}{\left (1+x+x^2\right )^3} \, dx-6 \int \frac {x^2}{\left (1+x+x^2\right )^3} \, dx-6 \int \frac {x^4}{\left (1+x+x^2\right )^3} \, dx-7 \int \frac {x^3}{\left (1+x+x^2\right )^3} \, dx-\int \frac {1}{\left (1+x+x^2\right )^3} \, dx-\int \frac {x^6}{\left (1+x+x^2\right )^3} \, dx+\int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} x^2 \left (3+x-x^2\right )}{\left (1+x+x^2\right )^3} \, dx\\ &=\frac {2+x}{2 \left (1+x+x^2\right )^2}+\frac {x (2+x)}{\left (1+x+x^2\right )^2}+\frac {x^3 (2+x)}{\left (1+x+x^2\right )^2}+\frac {x^4 (2+x)}{2 \left (1+x+x^2\right )^2}+\frac {x^5 (2+x)}{6 \left (1+x+x^2\right )^2}-\frac {1+2 x}{6 \left (1+x+x^2\right )^2}-\frac {7 x^3 (1+2 x)}{6 \left (1+x+x^2\right )^2}-\frac {1}{6} \int \frac {x^4 (10+2 x)}{\left (1+x+x^2\right )^2} \, dx-\frac {1}{2} \int \frac {x^3 (8+x)}{\left (1+x+x^2\right )^2} \, dx+\frac {3}{2} \int \frac {1}{\left (1+x+x^2\right )^2} \, dx+\frac {7}{2} \int \frac {x^2}{\left (1+x+x^2\right )^2} \, dx-6 \int \frac {x^2}{\left (1+x+x^2\right )^2} \, dx-\int \frac {1}{\left (1+x+x^2\right )^2} \, dx-\int \frac {2-2 x}{\left (1+x+x^2\right )^2} \, dx+\int \left (\frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{-1-x-x^2}-\frac {2 e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} (1+2 x)}{\left (1+x+x^2\right )^3}+\frac {3 e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} (1+x)}{\left (1+x+x^2\right )^2}\right ) \, dx\\ &=\frac {2+x}{2 \left (1+x+x^2\right )^2}+\frac {x (2+x)}{\left (1+x+x^2\right )^2}+\frac {x^3 (2+x)}{\left (1+x+x^2\right )^2}+\frac {x^4 (2+x)}{2 \left (1+x+x^2\right )^2}+\frac {x^5 (2+x)}{6 \left (1+x+x^2\right )^2}-\frac {1+2 x}{6 \left (1+x+x^2\right )^2}-\frac {7 x^3 (1+2 x)}{6 \left (1+x+x^2\right )^2}-\frac {2 (1+x)}{1+x+x^2}+\frac {5 x (2+x)}{6 \left (1+x+x^2\right )}+\frac {1+2 x}{6 \left (1+x+x^2\right )}+\frac {x^3 (3+2 x)}{3 \left (1+x+x^2\right )}+\frac {x^2 (5+3 x)}{2 \left (1+x+x^2\right )}+\frac {1}{18} \int \frac {(-54-30 x) x^2}{1+x+x^2} \, dx+\frac {1}{6} \int \frac {(-30-12 x) x}{1+x+x^2} \, dx-\frac {2}{3} \int \frac {1}{1+x+x^2} \, dx-2 \int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} (1+2 x)}{\left (1+x+x^2\right )^3} \, dx-2 \int \frac {1}{1+x+x^2} \, dx+\frac {7}{3} \int \frac {1}{1+x+x^2} \, dx+3 \int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} (1+x)}{\left (1+x+x^2\right )^2} \, dx-4 \int \frac {1}{1+x+x^2} \, dx+\int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{-1-x-x^2} \, dx+\int \frac {1}{1+x+x^2} \, dx\\ &=-2 x+\frac {2+x}{2 \left (1+x+x^2\right )^2}+\frac {x (2+x)}{\left (1+x+x^2\right )^2}+\frac {x^3 (2+x)}{\left (1+x+x^2\right )^2}+\frac {x^4 (2+x)}{2 \left (1+x+x^2\right )^2}+\frac {x^5 (2+x)}{6 \left (1+x+x^2\right )^2}-\frac {1+2 x}{6 \left (1+x+x^2\right )^2}-\frac {7 x^3 (1+2 x)}{6 \left (1+x+x^2\right )^2}-\frac {2 (1+x)}{1+x+x^2}+\frac {5 x (2+x)}{6 \left (1+x+x^2\right )}+\frac {1+2 x}{6 \left (1+x+x^2\right )}+\frac {x^3 (3+2 x)}{3 \left (1+x+x^2\right )}+\frac {x^2 (5+3 x)}{2 \left (1+x+x^2\right )}+\frac {1}{18} \int \left (-24-30 x+\frac {6 (4+9 x)}{1+x+x^2}\right ) \, dx+\frac {1}{6} \int \frac {12-18 x}{1+x+x^2} \, dx+\frac {4}{3} \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )-2 \int \left (\frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{\left (1+x+x^2\right )^3}+\frac {2 e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} x}{\left (1+x+x^2\right )^3}\right ) \, dx-2 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )+3 \int \left (\frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{\left (1+x+x^2\right )^2}+\frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} x}{\left (1+x+x^2\right )^2}\right ) \, dx+4 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )-\frac {14}{3} \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )+8 \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )+\int \left (-\frac {2 i e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{\sqrt {3} \left (-1+i \sqrt {3}-2 x\right )}-\frac {2 i e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{\sqrt {3} \left (1+i \sqrt {3}+2 x\right )}\right ) \, dx\\ &=-\frac {10 x}{3}-\frac {5 x^2}{6}+\frac {2+x}{2 \left (1+x+x^2\right )^2}+\frac {x (2+x)}{\left (1+x+x^2\right )^2}+\frac {x^3 (2+x)}{\left (1+x+x^2\right )^2}+\frac {x^4 (2+x)}{2 \left (1+x+x^2\right )^2}+\frac {x^5 (2+x)}{6 \left (1+x+x^2\right )^2}-\frac {1+2 x}{6 \left (1+x+x^2\right )^2}-\frac {7 x^3 (1+2 x)}{6 \left (1+x+x^2\right )^2}-\frac {2 (1+x)}{1+x+x^2}+\frac {5 x (2+x)}{6 \left (1+x+x^2\right )}+\frac {1+2 x}{6 \left (1+x+x^2\right )}+\frac {x^3 (3+2 x)}{3 \left (1+x+x^2\right )}+\frac {x^2 (5+3 x)}{2 \left (1+x+x^2\right )}-\frac {20 \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{3 \sqrt {3}}+\frac {1}{3} \int \frac {4+9 x}{1+x+x^2} \, dx-\frac {3}{2} \int \frac {1+2 x}{1+x+x^2} \, dx-2 \int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{\left (1+x+x^2\right )^3} \, dx+3 \int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{\left (1+x+x^2\right )^2} \, dx+3 \int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} x}{\left (1+x+x^2\right )^2} \, dx+\frac {7}{2} \int \frac {1}{1+x+x^2} \, dx-4 \int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}} x}{\left (1+x+x^2\right )^3} \, dx-\frac {(2 i) \int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{-1+i \sqrt {3}-2 x} \, dx}{\sqrt {3}}-\frac {(2 i) \int \frac {e^{\frac {2+4 x+6 x^2+5 x^3+2 x^4}{\left (1+x+x^2\right )^2}}}{1+i \sqrt {3}+2 x} \, dx}{\sqrt {3}}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 1.56 \begin {gather*} e^{2+\frac {1}{\left (1+x+x^2\right )^2}+\frac {-1+x}{1+x+x^2}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.17, size = 46, normalized size = 2.56 \begin {gather*} -x + e^{\left (\frac {2 \, x^{4} + 5 \, x^{3} + 6 \, x^{2} + 4 \, x + 2}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.44, size = 126, normalized size = 7.00 \begin {gather*} -x + e^{\left (\frac {2 \, x^{4}}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1} + \frac {5 \, x^{3}}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1} + \frac {6 \, x^{2}}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1} + \frac {4 \, x}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1} + \frac {2}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 35, normalized size = 1.94
method | result | size |
risch | \(-x +{\mathrm e}^{\frac {2 x^{4}+5 x^{3}+6 x^{2}+4 x +2}{\left (x^{2}+x +1\right )^{2}}}\) | \(35\) |
norman | \(\frac {x^{4} {\mathrm e}^{\frac {2 x^{4}+5 x^{3}+6 x^{2}+4 x +2}{x^{4}+2 x^{3}+3 x^{2}+2 x +1}}-\frac {5 x^{3}}{3}-\frac {4 x^{4}}{3}+\frac {x}{3}-x^{5}+2 x \,{\mathrm e}^{\frac {2 x^{4}+5 x^{3}+6 x^{2}+4 x +2}{x^{4}+2 x^{3}+3 x^{2}+2 x +1}}+3 \,{\mathrm e}^{\frac {2 x^{4}+5 x^{3}+6 x^{2}+4 x +2}{x^{4}+2 x^{3}+3 x^{2}+2 x +1}} x^{2}+2 \,{\mathrm e}^{\frac {2 x^{4}+5 x^{3}+6 x^{2}+4 x +2}{x^{4}+2 x^{3}+3 x^{2}+2 x +1}} x^{3}+\frac {2}{3}+{\mathrm e}^{\frac {2 x^{4}+5 x^{3}+6 x^{2}+4 x +2}{x^{4}+2 x^{3}+3 x^{2}+2 x +1}}}{\left (x^{2}+x +1\right )^{2}}\) | \(257\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 305, normalized size = 16.94 \begin {gather*} -x + \frac {8 \, x^{3} + 18 \, x^{2} + 16 \, x + 9}{6 \, {\left (x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1\right )}} - \frac {8 \, x^{3} + 9 \, x^{2} + 8 \, x + 2}{2 \, {\left (x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1\right )}} - \frac {4 \, x^{3} + 6 \, x^{2} + 8 \, x + 3}{6 \, {\left (x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1\right )}} + \frac {7 \, {\left (2 \, x^{3} + 6 \, x^{2} + 4 \, x + 3\right )}}{6 \, {\left (x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1\right )}} + \frac {2 \, x^{3} + 3 \, x^{2} + 4 \, x + 3}{2 \, {\left (x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1\right )}} - \frac {2 \, x^{3} + 3 \, x^{2} + 2 \, x + 2}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1} + \frac {2 \, x^{3} - 3 \, x^{2} - 2 \, x - 3}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1} + e^{\left (\frac {x}{x^{2} + x + 1} + \frac {1}{x^{4} + 2 \, x^{3} + 3 \, x^{2} + 2 \, x + 1} - \frac {1}{x^{2} + x + 1} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.72, size = 130, normalized size = 7.22 \begin {gather*} {\mathrm {e}}^{\frac {4\,x}{x^4+2\,x^3+3\,x^2+2\,x+1}}\,{\mathrm {e}}^{\frac {2\,x^4}{x^4+2\,x^3+3\,x^2+2\,x+1}}\,{\mathrm {e}}^{\frac {6\,x^2}{x^4+2\,x^3+3\,x^2+2\,x+1}}\,{\mathrm {e}}^{\frac {5\,x^3}{x^4+2\,x^3+3\,x^2+2\,x+1}}\,{\mathrm {e}}^{\frac {2}{x^4+2\,x^3+3\,x^2+2\,x+1}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 41, normalized size = 2.28 \begin {gather*} - x + e^{\frac {2 x^{4} + 5 x^{3} + 6 x^{2} + 4 x + 2}{x^{4} + 2 x^{3} + 3 x^{2} + 2 x + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________