Optimal. Leaf size=16 \[ \log \left (4+\frac {3 e^x x}{2 (2+x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (6+6 x+3 x^2\right )}{32+32 x+8 x^2+e^x \left (6 x+3 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (6+6 x+3 x^2\right )}{(2+x) \left (16+8 x+3 e^x x\right )} \, dx\\ &=\int \left (\frac {3 e^x x}{16+8 x+3 e^x x}+\frac {6 e^x}{(2+x) \left (16+8 x+3 e^x x\right )}\right ) \, dx\\ &=3 \int \frac {e^x x}{16+8 x+3 e^x x} \, dx+6 \int \frac {e^x}{(2+x) \left (16+8 x+3 e^x x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 27, normalized size = 1.69 \begin {gather*} 3 \left (-\frac {1}{3} \log (2+x)+\frac {1}{3} \log \left (16+8 x+3 e^x x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 24, normalized size = 1.50 \begin {gather*} -\log \left (x + 2\right ) + \log \relax (x) + \log \left (\frac {3 \, x e^{x} + 8 \, x + 16}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 18, normalized size = 1.12 \begin {gather*} \log \left (3 \, x e^{x} + 8 \, x + 16\right ) - \log \left (x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 1.19
method | result | size |
norman | \(-\ln \left (2+x \right )+\ln \left (3 \,{\mathrm e}^{x} x +8 x +16\right )\) | \(19\) |
risch | \(\ln \relax (x )-\ln \left (2+x \right )+\ln \left ({\mathrm e}^{x}+\frac {\frac {8 x}{3}+\frac {16}{3}}{x}\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 25, normalized size = 1.56 \begin {gather*} -\log \left (x + 2\right ) + \log \relax (x) + \log \left (\frac {3 \, x e^{x} + 8 \, x + 16}{3 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 18, normalized size = 1.12 \begin {gather*} \ln \left (8\,x+3\,x\,{\mathrm {e}}^x+16\right )-\ln \left (x+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 20, normalized size = 1.25 \begin {gather*} \log {\relax (x )} - \log {\left (x + 2 \right )} + \log {\left (e^{x} + \frac {8 x + 16}{3 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________