Optimal. Leaf size=22 \[ \frac {50 \left (4+e^{(5+x)^2}\right ) x}{(-1+x) (4+x)} \]
________________________________________________________________________________________
Rubi [B] time = 0.70, antiderivative size = 53, normalized size of antiderivative = 2.41, number of steps used = 14, number of rules used = 5, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {6742, 894, 2227, 2204, 2242} \begin {gather*} \frac {40 e^{x^2+10 x+25}}{x+4}-\frac {10 e^{x^2+10 x+25}}{1-x}+\frac {160}{x+4}-\frac {40}{1-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 894
Rule 2204
Rule 2227
Rule 2242
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {200 \left (4+x^2\right )}{(-1+x)^2 (4+x)^2}+\frac {50 e^{25+10 x+x^2} \left (-4-40 x+21 x^2+16 x^3+2 x^4\right )}{(1-x)^2 (4+x)^2}\right ) \, dx\\ &=50 \int \frac {e^{25+10 x+x^2} \left (-4-40 x+21 x^2+16 x^3+2 x^4\right )}{(1-x)^2 (4+x)^2} \, dx-200 \int \frac {4+x^2}{(-1+x)^2 (4+x)^2} \, dx\\ &=50 \int \left (2 e^{25+10 x+x^2}-\frac {e^{25+10 x+x^2}}{5 (-1+x)^2}+\frac {12 e^{25+10 x+x^2}}{5 (-1+x)}-\frac {4 e^{25+10 x+x^2}}{5 (4+x)^2}+\frac {8 e^{25+10 x+x^2}}{5 (4+x)}\right ) \, dx-200 \int \left (\frac {1}{5 (-1+x)^2}+\frac {4}{5 (4+x)^2}\right ) \, dx\\ &=-\frac {40}{1-x}+\frac {160}{4+x}-10 \int \frac {e^{25+10 x+x^2}}{(-1+x)^2} \, dx-40 \int \frac {e^{25+10 x+x^2}}{(4+x)^2} \, dx+80 \int \frac {e^{25+10 x+x^2}}{4+x} \, dx+100 \int e^{25+10 x+x^2} \, dx+120 \int \frac {e^{25+10 x+x^2}}{-1+x} \, dx\\ &=-\frac {40}{1-x}-\frac {10 e^{25+10 x+x^2}}{1-x}+\frac {160}{4+x}+\frac {40 e^{25+10 x+x^2}}{4+x}-20 \int e^{25+10 x+x^2} \, dx-80 \int e^{25+10 x+x^2} \, dx+100 \int e^{(5+x)^2} \, dx\\ &=-\frac {40}{1-x}-\frac {10 e^{25+10 x+x^2}}{1-x}+\frac {160}{4+x}+\frac {40 e^{25+10 x+x^2}}{4+x}+50 \sqrt {\pi } \text {erfi}(5+x)-20 \int e^{(5+x)^2} \, dx-80 \int e^{(5+x)^2} \, dx\\ &=-\frac {40}{1-x}-\frac {10 e^{25+10 x+x^2}}{1-x}+\frac {160}{4+x}+\frac {40 e^{25+10 x+x^2}}{4+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 22, normalized size = 1.00 \begin {gather*} \frac {50 \left (4+e^{(5+x)^2}\right ) x}{-4+3 x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 27, normalized size = 1.23 \begin {gather*} \frac {50 \, {\left (x e^{\left (x^{2} + 10 \, x + 25\right )} + 4 \, x\right )}}{x^{2} + 3 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 27, normalized size = 1.23 \begin {gather*} \frac {50 \, {\left (x e^{\left (x^{2} + 10 \, x + 25\right )} + 4 \, x\right )}}{x^{2} + 3 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 28, normalized size = 1.27
method | result | size |
norman | \(\frac {200 x +50 \,{\mathrm e}^{x^{2}+10 x +25} x}{x^{2}+3 x -4}\) | \(28\) |
risch | \(\frac {200 x}{x^{2}+3 x -4}+\frac {50 x \,{\mathrm e}^{\left (5+x \right )^{2}}}{x^{2}+3 x -4}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 57, normalized size = 2.59 \begin {gather*} \frac {50 \, x e^{\left (x^{2} + 10 \, x + 25\right )}}{x^{2} + 3 \, x - 4} + \frac {8 \, {\left (17 \, x - 12\right )}}{x^{2} + 3 \, x - 4} + \frac {32 \, {\left (2 \, x + 3\right )}}{x^{2} + 3 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.23, size = 24, normalized size = 1.09 \begin {gather*} \frac {50\,x\,\left ({\mathrm {e}}^{x^2+10\,x+25}+4\right )}{x^2+3\,x-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 32, normalized size = 1.45 \begin {gather*} \frac {50 x e^{x^{2} + 10 x + 25}}{x^{2} + 3 x - 4} + \frac {200 x}{x^{2} + 3 x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________