Optimal. Leaf size=26 \[ -2+e^{-\frac {1}{5} e^{e^{5+x^2}} x^2} x^{3/4} \]
________________________________________________________________________________________
Rubi [B] time = 0.20, antiderivative size = 79, normalized size of antiderivative = 3.04, number of steps used = 3, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {12, 2274, 2288} \begin {gather*} \frac {e^{e^{x^2+5}-\frac {1}{5} e^{e^{x^2+5}} x^2} \left (x^2+e^{x^2+5} x^4\right )}{\sqrt [4]{x} \left (e^{e^{x^2+5}} x+e^{x^2+e^{x^2+5}+5} x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2274
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{20} \int e^{\frac {1}{20} \left (-4 e^{e^{5+x^2}} x^2-5 \log (x)\right )} \left (15+e^{e^{5+x^2}} \left (-8 x^2-8 e^{5+x^2} x^4\right )\right ) \, dx\\ &=\frac {1}{20} \int \frac {e^{-\frac {1}{5} e^{e^{5+x^2}} x^2} \left (15+e^{e^{5+x^2}} \left (-8 x^2-8 e^{5+x^2} x^4\right )\right )}{\sqrt [4]{x}} \, dx\\ &=\frac {e^{e^{5+x^2}-\frac {1}{5} e^{e^{5+x^2}} x^2} \left (x^2+e^{5+x^2} x^4\right )}{\sqrt [4]{x} \left (e^{e^{5+x^2}} x+e^{5+e^{5+x^2}+x^2} x^3\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 24, normalized size = 0.92 \begin {gather*} e^{-\frac {1}{5} e^{e^{5+x^2}} x^2} x^{3/4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 20, normalized size = 0.77 \begin {gather*} x e^{\left (-\frac {1}{5} \, x^{2} e^{\left (e^{\left (x^{2} + 5\right )}\right )} - \frac {1}{4} \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{20} \, {\left (8 \, {\left (x^{4} e^{\left (x^{2} + 5\right )} + x^{2}\right )} e^{\left (e^{\left (x^{2} + 5\right )}\right )} - 15\right )} e^{\left (-\frac {1}{5} \, x^{2} e^{\left (e^{\left (x^{2} + 5\right )}\right )} - \frac {1}{4} \, \log \relax (x)\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 18, normalized size = 0.69
method | result | size |
risch | \(x^{\frac {3}{4}} {\mathrm e}^{-\frac {x^{2} {\mathrm e}^{{\mathrm e}^{x^{2}+5}}}{5}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {{\left (x^{\frac {15}{4}} e^{\left (x^{2} + 5\right )} + x^{\frac {7}{4}}\right )} e^{\left (-\frac {1}{5} \, x^{2} e^{\left (e^{\left (x^{2} + 5\right )}\right )}\right )}}{x^{3} e^{\left (x^{2} + 5\right )} + x} - \frac {1}{20} \, \int -\frac {5 \, {\left (3 \, x^{6} e^{\left (2 \, x^{2} + 10\right )} - {\left (3 \, x^{2} e^{\left (2 \, x^{2} + 10\right )} + {\left (8 \, x^{2} e^{5} + 11 \, e^{5}\right )} e^{\left (x^{2}\right )}\right )} x^{4} + 6 \, x^{4} e^{\left (x^{2} + 5\right )} + {\left ({\left (8 \, x^{4} e^{5} + 5 \, x^{2} e^{5}\right )} e^{\left (x^{2}\right )} - 3\right )} x^{2} + 3 \, x^{2}\right )} e^{\left (-\frac {1}{5} \, x^{2} e^{\left (e^{\left (x^{2} + 5\right )}\right )}\right )}}{{\left (x^{6} e^{\left (2 \, x^{2} + 10\right )} + 2 \, x^{4} e^{\left (x^{2} + 5\right )} + x^{2}\right )} x^{\frac {1}{4}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.18, size = 18, normalized size = 0.69 \begin {gather*} x^{3/4}\,{\mathrm {e}}^{-\frac {x^2\,{\mathrm {e}}^{{\mathrm {e}}^{x^2}\,{\mathrm {e}}^5}}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________