Optimal. Leaf size=32 \[ x \left (5+\frac {e^4}{\log \left (\frac {1}{3} \left (-5-\frac {1}{5 \left (4+\frac {-7+x}{x}\right )}\right )\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^4 x+e^4 \left (175-251 x+90 x^2\right ) \log \left (\frac {175-126 x}{-105+75 x}\right )+\left (875-1255 x+450 x^2\right ) \log ^2\left (\frac {175-126 x}{-105+75 x}\right )}{\left (175-251 x+90 x^2\right ) \log ^2\left (\frac {175-126 x}{-105+75 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5+\frac {e^4 x}{\left (175-251 x+90 x^2\right ) \log ^2\left (-\frac {7 (-25+18 x)}{15 (-7+5 x)}\right )}+\frac {e^4}{\log \left (-\frac {7 (-25+18 x)}{15 (-7+5 x)}\right )}\right ) \, dx\\ &=5 x+e^4 \int \frac {x}{\left (175-251 x+90 x^2\right ) \log ^2\left (-\frac {7 (-25+18 x)}{15 (-7+5 x)}\right )} \, dx+e^4 \int \frac {1}{\log \left (-\frac {7 (-25+18 x)}{15 (-7+5 x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 28, normalized size = 0.88 \begin {gather*} 5 x+\frac {e^4 x}{\log \left (-\frac {7 (-25+18 x)}{15 (-7+5 x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 41, normalized size = 1.28 \begin {gather*} \frac {x e^{4} + 5 \, x \log \left (-\frac {7 \, {\left (18 \, x - 25\right )}}{15 \, {\left (5 \, x - 7\right )}}\right )}{\log \left (-\frac {7 \, {\left (18 \, x - 25\right )}}{15 \, {\left (5 \, x - 7\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 86, normalized size = 2.69 \begin {gather*} \frac {\frac {7 \, {\left (18 \, x - 25\right )} e^{4}}{5 \, x - 7} - 25 \, e^{4} + \log \left (-\frac {7 \, {\left (18 \, x - 25\right )}}{15 \, {\left (5 \, x - 7\right )}}\right )}{\frac {5 \, {\left (18 \, x - 25\right )} \log \left (-\frac {7 \, {\left (18 \, x - 25\right )}}{15 \, {\left (5 \, x - 7\right )}}\right )}{5 \, x - 7} - 18 \, \log \left (-\frac {7 \, {\left (18 \, x - 25\right )}}{15 \, {\left (5 \, x - 7\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 25, normalized size = 0.78
method | result | size |
risch | \(5 x +\frac {x \,{\mathrm e}^{4}}{\ln \left (\frac {-126 x +175}{75 x -105}\right )}\) | \(25\) |
norman | \(\frac {x \,{\mathrm e}^{4}+5 x \ln \left (\frac {-126 x +175}{75 x -105}\right )}{\ln \left (\frac {-126 x +175}{75 x -105}\right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.51, size = 70, normalized size = 2.19 \begin {gather*} \frac {{\left (5 i \, \pi + e^{4} + 5 \, \log \relax (7) - 5 \, \log \relax (5) - 5 \, \log \relax (3)\right )} x + 5 \, x \log \left (18 \, x - 25\right ) - 5 \, x \log \left (5 \, x - 7\right )}{i \, \pi + \log \relax (7) - \log \relax (5) - \log \relax (3) + \log \left (18 \, x - 25\right ) - \log \left (5 \, x - 7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.08, size = 25, normalized size = 0.78 \begin {gather*} 5\,x+\frac {x\,{\mathrm {e}}^4}{\ln \left (-\frac {126\,x-175}{75\,x-105}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 19, normalized size = 0.59 \begin {gather*} 5 x + \frac {x e^{4}}{\log {\left (\frac {175 - 126 x}{75 x - 105} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________