Optimal. Leaf size=31 \[ e^{3 x+\frac {2}{3 x+x^2 \left (1+\frac {1}{4 x \log (4)}\right )}} \]
________________________________________________________________________________________
Rubi [B] time = 1.74, antiderivative size = 93, normalized size of antiderivative = 3.00, number of steps used = 3, number of rules used = 3, integrand size = 113, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {6741, 27, 2288} \begin {gather*} \frac {e^{3 x} 4^{\frac {8}{x (4 x \log (4)+1+12 \log (4))}} (8 x \log (4)+1+12 \log (4))}{x^2 (4 x \log (4)+1+12 \log (4))^2 \left (\frac {1}{x^2 (4 x \log (4)+1+12 \log (4))}+\frac {4 \log (4)}{x (4 x \log (4)+1+12 \log (4))^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4^{\frac {8}{x (1+12 \log (4)+4 x \log (4))}} e^{3 x} \left (-64 x \log ^2(4)+48 x^4 \log ^2(4)-8 \log (4) (1+12 \log (4))+24 x^3 \log (4) (1+12 \log (4))+3 x^2 (1+12 \log (4))^2\right )}{x^2 \left (16 x^2 \log ^2(4)+8 x \log (4) (1+12 \log (4))+(1+12 \log (4))^2\right )} \, dx\\ &=\int \frac {4^{\frac {8}{x (1+12 \log (4)+4 x \log (4))}} e^{3 x} \left (-64 x \log ^2(4)+48 x^4 \log ^2(4)-8 \log (4) (1+12 \log (4))+24 x^3 \log (4) (1+12 \log (4))+3 x^2 (1+12 \log (4))^2\right )}{x^2 (1+12 \log (4)+4 x \log (4))^2} \, dx\\ &=\frac {4^{\frac {8}{x (1+12 \log (4)+4 x \log (4))}} e^{3 x} (1+12 \log (4)+8 x \log (4))}{x^2 (1+12 \log (4)+4 x \log (4))^2 \left (\frac {4 \log (4)}{x (1+12 \log (4)+4 x \log (4))^2}+\frac {1}{x^2 (1+12 \log (4)+4 x \log (4))}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 26, normalized size = 0.84 \begin {gather*} 4^{\frac {8}{x (1+12 \log (4)+4 x \log (4))}} e^{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 24, normalized size = 0.77 \begin {gather*} 2^{\frac {16}{8 \, {\left (x^{2} + 3 \, x\right )} \log \relax (2) + x}} e^{\left (3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (64 \, {\left (3 \, x^{4} + 18 \, x^{3} + 27 \, x^{2} - 4 \, x - 6\right )} \log \relax (2)^{2} + 3 \, x^{2} + 16 \, {\left (3 \, x^{3} + 9 \, x^{2} - 1\right )} \log \relax (2)\right )} 2^{\frac {16}{8 \, {\left (x^{2} + 3 \, x\right )} \log \relax (2) + x}} e^{\left (3 \, x\right )}}{64 \, {\left (x^{4} + 6 \, x^{3} + 9 \, x^{2}\right )} \log \relax (2)^{2} + x^{2} + 16 \, {\left (x^{3} + 3 \, x^{2}\right )} \log \relax (2)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 25, normalized size = 0.81
method | result | size |
risch | \({\mathrm e}^{3 x} 65536^{\frac {1}{x \left (8 x \ln \relax (2)+24 \ln \relax (2)+1\right )}}\) | \(25\) |
gosper | \({\mathrm e}^{\frac {16 \ln \relax (2)}{x \left (8 x \ln \relax (2)+24 \ln \relax (2)+1\right )}+3 x}\) | \(26\) |
norman | \(\frac {\left (24 \ln \relax (2)+1\right ) x \,{\mathrm e}^{3 x} {\mathrm e}^{\frac {16 \ln \relax (2)}{2 \left (4 x^{2}+12 x \right ) \ln \relax (2)+x}}+8 x^{2} \ln \relax (2) {\mathrm e}^{3 x} {\mathrm e}^{\frac {16 \ln \relax (2)}{2 \left (4 x^{2}+12 x \right ) \ln \relax (2)+x}}}{x \left (8 x \ln \relax (2)+24 \ln \relax (2)+1\right )}\) | \(86\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 52, normalized size = 1.68 \begin {gather*} e^{\left (3 \, x - \frac {128 \, \log \relax (2)^{2}}{8 \, {\left (24 \, \log \relax (2)^{2} + \log \relax (2)\right )} x + 576 \, \log \relax (2)^{2} + 48 \, \log \relax (2) + 1} + \frac {16 \, \log \relax (2)}{x {\left (24 \, \log \relax (2) + 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.12, size = 25, normalized size = 0.81 \begin {gather*} 2^{\frac {16}{x+24\,x\,\ln \relax (2)+8\,x^2\,\ln \relax (2)}}\,{\mathrm {e}}^{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 20.53, size = 24, normalized size = 0.77 \begin {gather*} e^{3 x} e^{\frac {16 \log {\relax (2 )}}{x + \left (8 x^{2} + 24 x\right ) \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________