Optimal. Leaf size=24 \[ \log \left (e^{x+\left (e^{3 (5-x)}+x\right ) \left (\frac {1}{x}+x\right )} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 27, normalized size of antiderivative = 1.12, number of steps used = 12, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {14, 2199, 2194, 2177, 2178, 2176} \begin {gather*} x^2+e^{15-3 x} x+x+\frac {e^{15-3 x}}{x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+x+2 x^2}{x}-\frac {e^{15-3 x} \left (1+3 x-x^2+3 x^3\right )}{x^2}\right ) \, dx\\ &=\int \frac {1+x+2 x^2}{x} \, dx-\int \frac {e^{15-3 x} \left (1+3 x-x^2+3 x^3\right )}{x^2} \, dx\\ &=\int \left (1+\frac {1}{x}+2 x\right ) \, dx-\int \left (-e^{15-3 x}+\frac {e^{15-3 x}}{x^2}+\frac {3 e^{15-3 x}}{x}+3 e^{15-3 x} x\right ) \, dx\\ &=x+x^2+\log (x)-3 \int \frac {e^{15-3 x}}{x} \, dx-3 \int e^{15-3 x} x \, dx+\int e^{15-3 x} \, dx-\int \frac {e^{15-3 x}}{x^2} \, dx\\ &=-\frac {1}{3} e^{15-3 x}+\frac {e^{15-3 x}}{x}+x+e^{15-3 x} x+x^2-3 e^{15} \text {Ei}(-3 x)+\log (x)+3 \int \frac {e^{15-3 x}}{x} \, dx-\int e^{15-3 x} \, dx\\ &=\frac {e^{15-3 x}}{x}+x+e^{15-3 x} x+x^2+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 27, normalized size = 1.12 \begin {gather*} \frac {e^{15-3 x}}{x}+x+e^{15-3 x} x+x^2+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 27, normalized size = 1.12 \begin {gather*} \frac {x^{3} + x^{2} + {\left (x^{2} + 1\right )} e^{\left (-3 \, x + 15\right )} + x \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 31, normalized size = 1.29 \begin {gather*} \frac {x^{3} + x^{2} e^{\left (-3 \, x + 15\right )} + x^{2} + x \log \relax (x) + e^{\left (-3 \, x + 15\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 23, normalized size = 0.96
method | result | size |
risch | \(\ln \relax (x )+x^{2}+x +\frac {\left (x^{2}+1\right ) {\mathrm e}^{15-3 x}}{x}\) | \(23\) |
norman | \(\frac {x^{2}+x^{3}+{\mathrm e}^{15-3 x} x^{2}+{\mathrm e}^{15-3 x}}{x}+\ln \relax (x )\) | \(31\) |
derivativedivides | \(\ln \left (-3 x \right )-55+11 x +\frac {\left (15-3 x \right )^{2}}{9}+\frac {{\mathrm e}^{15-3 x}}{x}+5 \,{\mathrm e}^{15-3 x}-\frac {{\mathrm e}^{15-3 x} \left (15-3 x \right )}{3}\) | \(50\) |
default | \(\ln \left (-3 x \right )-55+11 x +\frac {\left (15-3 x \right )^{2}}{9}+\frac {{\mathrm e}^{15-3 x}}{x}+5 \,{\mathrm e}^{15-3 x}-\frac {{\mathrm e}^{15-3 x} \left (15-3 x \right )}{3}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 46, normalized size = 1.92 \begin {gather*} x^{2} - 3 \, {\rm Ei}\left (-3 \, x\right ) e^{15} + \frac {1}{3} \, {\left (3 \, x e^{15} + e^{15}\right )} e^{\left (-3 \, x\right )} + 3 \, e^{15} \Gamma \left (-1, 3 \, x\right ) + x - \frac {1}{3} \, e^{\left (-3 \, x + 15\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.27, size = 30, normalized size = 1.25 \begin {gather*} \ln \relax (x)+\frac {{\mathrm {e}}^{15-3\,x}+x^2\,{\mathrm {e}}^{15-3\,x}+x^2+x^3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 20, normalized size = 0.83 \begin {gather*} x^{2} + x + \log {\relax (x )} + \frac {\left (x^{2} + 1\right ) e^{15 - 3 x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________