Optimal. Leaf size=31 \[ -\frac {1}{4}-\log \left (\frac {1}{3} \left (3+e^3 \left (2-e^{2-x^2}+x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 42, normalized size of antiderivative = 1.35, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6684} \begin {gather*} -\log \left (-e^{-x^2} \left (-e^{x^2+3} x-3 e^{x^2}-2 e^{x^2+3}+e^5\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\log \left (-e^{-x^2} \left (e^5-3 e^{x^2}-2 e^{3+x^2}-e^{3+x^2} x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.64, size = 22, normalized size = 0.71 \begin {gather*} -\log \left (-3+e^{5-x^2}-e^3 (2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 20, normalized size = 0.65 \begin {gather*} -\log \left (-{\left (x + 2\right )} e^{3} + e^{\left (-x^{2} + 5\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 22, normalized size = 0.71 \begin {gather*} -\log \left (-x e^{3} - 2 \, e^{3} + e^{\left (-x^{2} + 5\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 26, normalized size = 0.84
method | result | size |
norman | \(-\ln \left (x \,{\mathrm e}^{3}-{\mathrm e}^{3} {\mathrm e}^{-x^{2}+2}+2 \,{\mathrm e}^{3}+3\right )\) | \(26\) |
risch | \(2-\ln \left ({\mathrm e}^{-x^{2}+2}-\left (x \,{\mathrm e}^{3}+2 \,{\mathrm e}^{3}+3\right ) {\mathrm e}^{-3}\right )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 21, normalized size = 0.68 \begin {gather*} -\log \left ({\left (x + 2\right )} e^{3} - e^{\left (-x^{2} + 5\right )} + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.38, size = 20, normalized size = 0.65 \begin {gather*} -\ln \left (x+3\,{\mathrm {e}}^{-3}-{\mathrm {e}}^{2-x^2}+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 26, normalized size = 0.84 \begin {gather*} - \log {\left (\frac {- x e^{3} - 2 e^{3} - 3}{e^{3}} + e^{2 - x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________