Optimal. Leaf size=22 \[ \frac {3 \log (x)}{16 \left (2+5 \left (3+e^{2+x}\right )-x\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {51+15 e^{2+x}-3 x+\left (3 x-15 e^{2+x} x\right ) \log (x)}{4624 x+400 e^{4+2 x} x-544 x^2+16 x^3+e^{2+x} \left (2720 x-160 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (17+5 e^{2+x}-x-\left (-1+5 e^{2+x}\right ) x \log (x)\right )}{16 \left (17+5 e^{2+x}-x\right )^2 x} \, dx\\ &=\frac {3}{16} \int \frac {17+5 e^{2+x}-x-\left (-1+5 e^{2+x}\right ) x \log (x)}{\left (17+5 e^{2+x}-x\right )^2 x} \, dx\\ &=\frac {3}{16} \int \left (-\frac {(-18+x) \log (x)}{\left (17+5 e^{2+x}-x\right )^2}-\frac {-1+x \log (x)}{\left (17+5 e^{2+x}-x\right ) x}\right ) \, dx\\ &=-\left (\frac {3}{16} \int \frac {(-18+x) \log (x)}{\left (17+5 e^{2+x}-x\right )^2} \, dx\right )-\frac {3}{16} \int \frac {-1+x \log (x)}{\left (17+5 e^{2+x}-x\right ) x} \, dx\\ &=-\left (\frac {3}{16} \int \left (-\frac {1}{\left (17+5 e^{2+x}-x\right ) x}+\frac {\log (x)}{17+5 e^{2+x}-x}\right ) \, dx\right )+\frac {3}{16} \int \frac {-18 \int \frac {1}{\left (-17-5 e^{2+x}+x\right )^2} \, dx+\int \frac {x}{\left (-17-5 e^{2+x}+x\right )^2} \, dx}{x} \, dx-\frac {1}{16} (3 \log (x)) \int \frac {x}{\left (17+5 e^{2+x}-x\right )^2} \, dx+\frac {1}{8} (27 \log (x)) \int \frac {1}{\left (17+5 e^{2+x}-x\right )^2} \, dx\\ &=\frac {3}{16} \int \frac {1}{\left (17+5 e^{2+x}-x\right ) x} \, dx-\frac {3}{16} \int \frac {\log (x)}{17+5 e^{2+x}-x} \, dx+\frac {3}{16} \int \left (-\frac {18 \int \frac {1}{\left (-17-5 e^{2+x}+x\right )^2} \, dx}{x}+\frac {\int \frac {x}{\left (-17-5 e^{2+x}+x\right )^2} \, dx}{x}\right ) \, dx-\frac {1}{16} (3 \log (x)) \int \frac {x}{\left (17+5 e^{2+x}-x\right )^2} \, dx+\frac {1}{8} (27 \log (x)) \int \frac {1}{\left (17+5 e^{2+x}-x\right )^2} \, dx\\ &=\frac {3}{16} \int \frac {1}{\left (17+5 e^{2+x}-x\right ) x} \, dx+\frac {3}{16} \int \frac {\int \frac {1}{17+5 e^{2+x}-x} \, dx}{x} \, dx+\frac {3}{16} \int \frac {\int \frac {x}{\left (-17-5 e^{2+x}+x\right )^2} \, dx}{x} \, dx-\frac {27}{8} \int \frac {\int \frac {1}{\left (-17-5 e^{2+x}+x\right )^2} \, dx}{x} \, dx-\frac {1}{16} (3 \log (x)) \int \frac {1}{17+5 e^{2+x}-x} \, dx-\frac {1}{16} (3 \log (x)) \int \frac {x}{\left (17+5 e^{2+x}-x\right )^2} \, dx+\frac {1}{8} (27 \log (x)) \int \frac {1}{\left (17+5 e^{2+x}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 20, normalized size = 0.91 \begin {gather*} \frac {3 \log (x)}{16 \left (17+5 e^{2+x}-x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 15, normalized size = 0.68 \begin {gather*} -\frac {3 \, \log \relax (x)}{16 \, {\left (x - 5 \, e^{\left (x + 2\right )} - 17\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 15, normalized size = 0.68 \begin {gather*} -\frac {3 \, \log \relax (x)}{16 \, {\left (x - 5 \, e^{\left (x + 2\right )} - 17\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 16, normalized size = 0.73
method | result | size |
risch | \(-\frac {3 \ln \relax (x )}{16 \left (x -5 \,{\mathrm e}^{2+x}-17\right )}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 15, normalized size = 0.68 \begin {gather*} -\frac {3 \, \log \relax (x)}{16 \, {\left (x - 5 \, e^{\left (x + 2\right )} - 17\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.11, size = 17, normalized size = 0.77 \begin {gather*} \frac {3\,\ln \relax (x)}{16\,\left (5\,{\mathrm {e}}^{x+2}-x+17\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 15, normalized size = 0.68 \begin {gather*} \frac {3 \log {\relax (x )}}{- 16 x + 80 e^{x + 2} + 272} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________