Optimal. Leaf size=17 \[ \log \left (\frac {25+\frac {x^2}{e^2}}{25 x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 15, normalized size of antiderivative = 0.88, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {1593, 446, 72} \begin {gather*} \log \left (x^2+25 e^2\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 72
Rule 446
Rule 1593
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-25 e^2+x^2}{x \left (25 e^2+x^2\right )} \, dx\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {-25 e^2+x}{x \left (25 e^2+x\right )} \, dx,x,x^2\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \left (-\frac {1}{x}+\frac {2}{25 e^2+x}\right ) \, dx,x,x^2\right )\\ &=-\log (x)+\log \left (25 e^2+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 0.88 \begin {gather*} -\log (x)+\log \left (25 e^2+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.23, size = 14, normalized size = 0.82 \begin {gather*} \log \left (x^{2} + 25 \, e^{2}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 16, normalized size = 0.94 \begin {gather*} \log \left (x^{2} + 25 \, e^{2}\right ) - \frac {1}{2} \, \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 15, normalized size = 0.88
method | result | size |
default | \(-\ln \relax (x )+\ln \left (x^{2}+25 \,{\mathrm e}^{2}\right )\) | \(15\) |
norman | \(-\ln \relax (x )+\ln \left (x^{2}+25 \,{\mathrm e}^{2}\right )\) | \(15\) |
risch | \(-\ln \relax (x )+\ln \left (x^{2}+25 \,{\mathrm e}^{2}\right )\) | \(15\) |
meijerg | \(-\ln \relax (x )+\ln \relax (5)+1+\ln \left (1+\frac {{\mathrm e}^{-2} x^{2}}{25}\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 14, normalized size = 0.82 \begin {gather*} \log \left (x^{2} + 25 \, e^{2}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.74, size = 14, normalized size = 0.82 \begin {gather*} \ln \left (x^2+25\,{\mathrm {e}}^2\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 12, normalized size = 0.71 \begin {gather*} - \log {\relax (x )} + \log {\left (x^{2} + 25 e^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________