Optimal. Leaf size=24 \[ \frac {9 x^2}{\log ^2\left (\frac {2 \left (x-x^2\right ) \log (x)}{-2+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 4.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-36 x+54 x^2-18 x^3+\left (-36 x+72 x^2-18 x^3\right ) \log (x)+\left (36 x-54 x^2+18 x^3\right ) \log (x) \log \left (\frac {\left (2 x-2 x^2\right ) \log (x)}{-2+x}\right )}{\left (2-3 x+x^2\right ) \log (x) \log ^3\left (\frac {\left (2 x-2 x^2\right ) \log (x)}{-2+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 x \left (-2+3 x-x^2+\log (x) \left (-2+4 x-x^2+\left (2-3 x+x^2\right ) \log \left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )\right )\right )}{\left (2-3 x+x^2\right ) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx\\ &=18 \int \frac {x \left (-2+3 x-x^2+\log (x) \left (-2+4 x-x^2+\left (2-3 x+x^2\right ) \log \left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )\right )\right )}{\left (2-3 x+x^2\right ) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx\\ &=18 \int \left (-\frac {x \left (2-3 x+x^2+2 \log (x)-4 x \log (x)+x^2 \log (x)\right )}{(-2+x) (-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}+\frac {x}{\log ^2\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}\right ) \, dx\\ &=-\left (18 \int \frac {x \left (2-3 x+x^2+2 \log (x)-4 x \log (x)+x^2 \log (x)\right )}{(-2+x) (-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx\right )+18 \int \frac {x}{\log ^2\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx\\ &=-\left (18 \int \left (\frac {-2+3 x-x^2-2 \log (x)+4 x \log (x)-x^2 \log (x)}{(-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}+\frac {2 \left (2-3 x+x^2+2 \log (x)-4 x \log (x)+x^2 \log (x)\right )}{(-2+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}\right ) \, dx\right )+18 \int \frac {x}{\log ^2\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx\\ &=-\left (18 \int \frac {-2+3 x-x^2-2 \log (x)+4 x \log (x)-x^2 \log (x)}{(-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx\right )+18 \int \frac {x}{\log ^2\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx-36 \int \frac {2-3 x+x^2+2 \log (x)-4 x \log (x)+x^2 \log (x)}{(-2+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx\\ &=-\left (18 \int \left (-\frac {2}{(-1+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}+\frac {4 x}{(-1+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}-\frac {x^2}{(-1+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}-\frac {2}{(-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}+\frac {3 x}{(-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}-\frac {x^2}{(-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}\right ) \, dx\right )+18 \int \frac {x}{\log ^2\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx-36 \int \left (\frac {2}{(-2+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}-\frac {4 x}{(-2+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}+\frac {x^2}{(-2+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}+\frac {2}{(-2+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}-\frac {3 x}{(-2+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}+\frac {x^2}{(-2+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )}\right ) \, dx\\ &=18 \int \frac {x^2}{(-1+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx+18 \int \frac {x^2}{(-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx+18 \int \frac {x}{\log ^2\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx+36 \int \frac {1}{(-1+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx-36 \int \frac {x^2}{(-2+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx+36 \int \frac {1}{(-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx-36 \int \frac {x^2}{(-2+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx-54 \int \frac {x}{(-1+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx-72 \int \frac {1}{(-2+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx-72 \int \frac {x}{(-1+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx-72 \int \frac {1}{(-2+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx+108 \int \frac {x}{(-2+x) \log (x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx+144 \int \frac {x}{(-2+x) \log ^3\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 21, normalized size = 0.88 \begin {gather*} \frac {9 x^2}{\log ^2\left (-\frac {2 (-1+x) x \log (x)}{-2+x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.62, size = 24, normalized size = 1.00 \begin {gather*} \frac {9 \, x^{2}}{\log \left (-\frac {2 \, {\left (x^{2} - x\right )} \log \relax (x)}{x - 2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 525, normalized size = 21.88 \begin {gather*} \frac {9 \, {\left (x^{4} \log \relax (x) + x^{4} - 4 \, x^{3} \log \relax (x) - 3 \, x^{3} + 2 \, x^{2} \log \relax (x) + 2 \, x^{2}\right )}}{x^{2} \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right )^{2} \log \relax (x) - 2 \, x^{2} \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \left (x - 2\right ) \log \relax (x) + x^{2} \log \left (x - 2\right )^{2} \log \relax (x) + 2 \, x^{2} \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \relax (x)^{2} - 2 \, x^{2} \log \left (x - 2\right ) \log \relax (x)^{2} + x^{2} \log \relax (x)^{3} + x^{2} \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right )^{2} - 2 \, x^{2} \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \left (x - 2\right ) + x^{2} \log \left (x - 2\right )^{2} + 2 \, x^{2} \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \relax (x) - 4 \, x \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right )^{2} \log \relax (x) - 2 \, x^{2} \log \left (x - 2\right ) \log \relax (x) + 8 \, x \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \left (x - 2\right ) \log \relax (x) - 4 \, x \log \left (x - 2\right )^{2} \log \relax (x) + x^{2} \log \relax (x)^{2} - 8 \, x \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \relax (x)^{2} + 8 \, x \log \left (x - 2\right ) \log \relax (x)^{2} - 4 \, x \log \relax (x)^{3} - 3 \, x \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right )^{2} + 6 \, x \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \left (x - 2\right ) - 3 \, x \log \left (x - 2\right )^{2} - 6 \, x \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \relax (x) + 2 \, \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right )^{2} \log \relax (x) + 6 \, x \log \left (x - 2\right ) \log \relax (x) - 4 \, \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \left (x - 2\right ) \log \relax (x) + 2 \, \log \left (x - 2\right )^{2} \log \relax (x) - 3 \, x \log \relax (x)^{2} + 4 \, \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \relax (x)^{2} - 4 \, \log \left (x - 2\right ) \log \relax (x)^{2} + 2 \, \log \relax (x)^{3} + 2 \, \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right )^{2} - 4 \, \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \left (x - 2\right ) + 2 \, \log \left (x - 2\right )^{2} + 4 \, \log \left (-2 \, x \log \relax (x) + 2 \, \log \relax (x)\right ) \log \relax (x) - 4 \, \log \left (x - 2\right ) \log \relax (x) + 2 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.11, size = 381, normalized size = 15.88
method | result | size |
risch | \(-\frac {36 x^{2}}{\left (\pi \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x -2}\right )^{3}-\pi \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x -2}\right )^{2} \mathrm {csgn}\left (\frac {i}{x -2}\right )-\pi \mathrm {csgn}\left (\frac {i \left (x -1\right )}{x -2}\right )^{2} \mathrm {csgn}\left (i \left (x -1\right )\right )-\pi \,\mathrm {csgn}\left (\frac {i \left (x -1\right )}{x -2}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x ) \left (x -1\right )}{x -2}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i \left (x -1\right )}{x -2}\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x ) \left (x -1\right )}{x -2}\right ) \mathrm {csgn}\left (i \ln \relax (x )\right )+\pi \,\mathrm {csgn}\left (\frac {i \left (x -1\right )}{x -2}\right ) \mathrm {csgn}\left (\frac {i}{x -2}\right ) \mathrm {csgn}\left (i \left (x -1\right )\right )+\pi \mathrm {csgn}\left (\frac {i \ln \relax (x ) \left (x -1\right )}{x -2}\right )^{3}-\pi \mathrm {csgn}\left (\frac {i \ln \relax (x ) \left (x -1\right )}{x -2}\right )^{2} \mathrm {csgn}\left (i \ln \relax (x )\right )-\pi \,\mathrm {csgn}\left (\frac {i \ln \relax (x ) \left (x -1\right )}{x -2}\right ) \mathrm {csgn}\left (\frac {i x \ln \relax (x ) \left (x -1\right )}{x -2}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i \ln \relax (x ) \left (x -1\right )}{x -2}\right ) \mathrm {csgn}\left (\frac {i x \ln \relax (x ) \left (x -1\right )}{x -2}\right ) \mathrm {csgn}\left (i x \right )-\pi \mathrm {csgn}\left (\frac {i x \ln \relax (x ) \left (x -1\right )}{x -2}\right )^{3}+2 \pi \mathrm {csgn}\left (\frac {i x \ln \relax (x ) \left (x -1\right )}{x -2}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i x \ln \relax (x ) \left (x -1\right )}{x -2}\right )^{2} \mathrm {csgn}\left (i x \right )-2 \pi -2 i \ln \left (x -2\right )+2 i \ln \relax (2)+2 i \ln \left (x -1\right )+2 i \ln \left (\ln \relax (x )\right )+2 i \ln \relax (x )\right )^{2}}\) | \(381\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.66, size = 124, normalized size = 5.17 \begin {gather*} -\frac {9 \, x^{2}}{\pi ^{2} - 2 i \, \pi \log \relax (2) - \log \relax (2)^{2} + 2 \, {\left (-i \, \pi - \log \relax (2) + \log \left (x - 2\right ) - \log \relax (x) - \log \left (\log \relax (x)\right )\right )} \log \left (x - 1\right ) - \log \left (x - 1\right )^{2} + 2 \, {\left (i \, \pi + \log \relax (2) + \log \relax (x) + \log \left (\log \relax (x)\right )\right )} \log \left (x - 2\right ) - \log \left (x - 2\right )^{2} + 2 \, {\left (-i \, \pi - \log \relax (2)\right )} \log \relax (x) - \log \relax (x)^{2} + 2 \, {\left (-i \, \pi - \log \relax (2) - \log \relax (x)\right )} \log \left (\log \relax (x)\right ) - \log \left (\log \relax (x)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.32, size = 843, normalized size = 35.12 \begin {gather*} 27\,x+\frac {\frac {9\,x^2\,\ln \relax (x)\,\left (x^2-3\,x+2\right )}{2\,\ln \relax (x)-3\,x+x^2\,\ln \relax (x)-4\,x\,\ln \relax (x)+x^2+2}-\frac {9\,x\,\ln \left (\frac {\ln \relax (x)\,\left (2\,x-2\,x^2\right )}{x-2}\right )\,\ln \relax (x)\,\left (x^2-3\,x+2\right )\,\left (2\,x^5\,{\ln \relax (x)}^2+2\,x^5\,\ln \relax (x)+x^5-15\,x^4\,{\ln \relax (x)}^2-12\,x^4\,\ln \relax (x)-6\,x^4+32\,x^3\,{\ln \relax (x)}^2+26\,x^3\,\ln \relax (x)+13\,x^3-26\,x^2\,{\ln \relax (x)}^2-24\,x^2\,\ln \relax (x)-12\,x^2+8\,x\,{\ln \relax (x)}^2+8\,x\,\ln \relax (x)+4\,x\right )}{{\left (2\,\ln \relax (x)-3\,x+x^2\,\ln \relax (x)-4\,x\,\ln \relax (x)+x^2+2\right )}^3}}{\ln \left (\frac {\ln \relax (x)\,\left (2\,x-2\,x^2\right )}{x-2}\right )}+\frac {9\,x^2-\frac {9\,x^2\,\ln \left (\frac {\ln \relax (x)\,\left (2\,x-2\,x^2\right )}{x-2}\right )\,\ln \relax (x)\,\left (x^2-3\,x+2\right )}{2\,\ln \relax (x)-3\,x+x^2\,\ln \relax (x)-4\,x\,\ln \relax (x)+x^2+2}}{{\ln \left (\frac {\ln \relax (x)\,\left (2\,x-2\,x^2\right )}{x-2}\right )}^2}+\frac {162\,x^5-1944\,x^4+6336\,x^3-7452\,x^2+3672\,x-648}{x^6-12\,x^5+54\,x^4-112\,x^3+108\,x^2-48\,x+8}+18\,x^2+\frac {9\,\left (3\,x^{17}-79\,x^{16}+904\,x^{15}-5986\,x^{14}+25783\,x^{13}-76855\,x^{12}+164354\,x^{11}-257452\,x^{10}+298436\,x^9-256268\,x^8+161528\,x^7-72992\,x^6+22528\,x^5-4288\,x^4+384\,x^3\right )}{{\left (x^2-4\,x+2\right )}^3\,\left ({\ln \relax (x)}^2\,{\left (x^2-4\,x+2\right )}^2+{\left (x^2-3\,x+2\right )}^2+2\,\ln \relax (x)\,\left (x^2-3\,x+2\right )\,\left (x^2-4\,x+2\right )\right )\,\left (x^5-9\,x^4+20\,x^3-14\,x^2+4\,x\right )}-\frac {9\,\left (x^{19}-30\,x^{18}+399\,x^{17}-3136\,x^{16}+16379\,x^{15}-60526\,x^{14}+164269\,x^{13}-335036\,x^{12}+520484\,x^{11}-619816\,x^{10}+565812\,x^9-393296\,x^8+204976\,x^7-77824\,x^6+20416\,x^5-3328\,x^4+256\,x^3\right )}{{\left (x^2-4\,x+2\right )}^3\,\left ({\ln \relax (x)}^3\,{\left (x^2-4\,x+2\right )}^3+{\left (x^2-3\,x+2\right )}^3+3\,{\ln \relax (x)}^2\,\left (x^2-3\,x+2\right )\,{\left (x^2-4\,x+2\right )}^2+3\,\ln \relax (x)\,{\left (x^2-3\,x+2\right )}^2\,\left (x^2-4\,x+2\right )\right )\,\left (x^5-9\,x^4+20\,x^3-14\,x^2+4\,x\right )}-\frac {9\,\left (4\,x^{15}-91\,x^{14}+877\,x^{13}-4759\,x^{12}+16327\,x^{11}-37610\,x^{10}+60124\,x^9-67772\,x^8+53948\,x^7-29864\,x^6+11024\,x^5-2464\,x^4+256\,x^3\right )}{{\left (x^2-4\,x+2\right )}^3\,\left (\ln \relax (x)\,\left (x^2-4\,x+2\right )-3\,x+x^2+2\right )\,\left (x^5-9\,x^4+20\,x^3-14\,x^2+4\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 22, normalized size = 0.92 \begin {gather*} \frac {9 x^{2}}{\log {\left (\frac {\left (- 2 x^{2} + 2 x\right ) \log {\relax (x )}}{x - 2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________