Optimal. Leaf size=24 \[ e^{(5 (5-4 x)+x) \left (1+\log \left (81 x^4\right )\right )} x^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{25-19 x+(25-19 x) \log \left (81 x^4\right )} \left (102 x-95 x^2-19 x^2 \log \left (81 x^4\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-\left ((-25+19 x) \left (1+\log \left (81 x^4\right )\right )\right )} \left (102 x-95 x^2-19 x^2 \log \left (81 x^4\right )\right ) \, dx\\ &=\int \left (102 e^{-\left ((-25+19 x) \left (1+\log \left (81 x^4\right )\right )\right )} x-95 e^{-\left ((-25+19 x) \left (1+\log \left (81 x^4\right )\right )\right )} x^2-19 e^{-\left ((-25+19 x) \left (1+\log \left (81 x^4\right )\right )\right )} x^2 \log \left (81 x^4\right )\right ) \, dx\\ &=-\left (19 \int e^{-\left ((-25+19 x) \left (1+\log \left (81 x^4\right )\right )\right )} x^2 \log \left (81 x^4\right ) \, dx\right )-95 \int e^{-\left ((-25+19 x) \left (1+\log \left (81 x^4\right )\right )\right )} x^2 \, dx+102 \int e^{-\left ((-25+19 x) \left (1+\log \left (81 x^4\right )\right )\right )} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 20, normalized size = 0.83 \begin {gather*} (81 e)^{25-19 x} x^{102} \left (x^4\right )^{-19 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 23, normalized size = 0.96 \begin {gather*} x^{2} e^{\left (-{\left (19 \, x - 25\right )} \log \left (81 \, x^{4}\right ) - 19 \, x + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 27, normalized size = 1.12 \begin {gather*} x^{2} e^{\left (-19 \, x \log \left (81 \, x^{4}\right ) - 19 \, x + 25 \, \log \left (81 \, x^{4}\right ) + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 0.92
method | result | size |
risch | \(x^{2} \left (81 x^{4}\right )^{-19 x +25} {\mathrm e}^{-19 x +25}\) | \(22\) |
default | \(x^{2} {\mathrm e}^{\left (-19 x +25\right ) \ln \left (81 x^{4}\right )-19 x +25}\) | \(23\) |
norman | \(x^{2} {\mathrm e}^{\left (-19 x +25\right ) \ln \left (81 x^{4}\right )-19 x +25}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 21, normalized size = 0.88 \begin {gather*} 515377520732011331036461129765621272702107522001 \, x^{102} e^{\left (-76 \, x \log \relax (3) - 76 \, x \log \relax (x) - 19 \, x + 25\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.52, size = 27, normalized size = 1.12 \begin {gather*} \frac {515377520732011331036461129765621272702107522001\,x^{102}\,{\mathrm {e}}^{-19\,x}\,{\mathrm {e}}^{25}}{3^{76\,x}\,{\left (x^4\right )}^{19\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 20, normalized size = 0.83 \begin {gather*} x^{2} e^{- 19 x + \left (25 - 19 x\right ) \log {\left (81 x^{4} \right )} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________