Optimal. Leaf size=22 \[ \frac {77 \left (1-\frac {25 x}{x (e+x)+\log (x)}\right )}{4 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.49, antiderivative size = 23, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 4, integrand size = 101, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {6688, 12, 6742, 6686} \begin {gather*} \frac {77}{4 x}-\frac {1925}{4 \left (x^2+e x+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {77 \left (-x \left (-25+e^2 x-50 x^2+x^3+e x (-25+2 x)\right )-2 x (e+x) \log (x)-\log ^2(x)\right )}{4 x^2 (x (e+x)+\log (x))^2} \, dx\\ &=\frac {77}{4} \int \frac {-x \left (-25+e^2 x-50 x^2+x^3+e x (-25+2 x)\right )-2 x (e+x) \log (x)-\log ^2(x)}{x^2 (x (e+x)+\log (x))^2} \, dx\\ &=\frac {77}{4} \int \left (-\frac {1}{x^2}+\frac {25 \left (1+e x+2 x^2\right )}{x \left (e x+x^2+\log (x)\right )^2}\right ) \, dx\\ &=\frac {77}{4 x}+\frac {1925}{4} \int \frac {1+e x+2 x^2}{x \left (e x+x^2+\log (x)\right )^2} \, dx\\ &=\frac {77}{4 x}-\frac {1925}{4 \left (e x+x^2+\log (x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 23, normalized size = 1.05 \begin {gather*} -\frac {77}{4} \left (-\frac {1}{x}+\frac {25}{e x+x^2+\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 31, normalized size = 1.41 \begin {gather*} \frac {77 \, {\left (x^{2} + x e - 25 \, x + \log \relax (x)\right )}}{4 \, {\left (x^{3} + x^{2} e + x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 21, normalized size = 0.95
method | result | size |
risch | \(\frac {77}{4 x}-\frac {1925}{4 \left (x \,{\mathrm e}+x^{2}+\ln \relax (x )\right )}\) | \(21\) |
norman | \(\frac {\left (-\frac {1925}{4}+\frac {77 \,{\mathrm e}}{4}\right ) x +\frac {77 x^{2}}{4}+\frac {77 \ln \relax (x )}{4}}{x \left (x \,{\mathrm e}+x^{2}+\ln \relax (x )\right )}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 30, normalized size = 1.36 \begin {gather*} \frac {77 \, {\left (x^{2} + x {\left (e - 25\right )} + \log \relax (x)\right )}}{4 \, {\left (x^{3} + x^{2} e + x \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {\ln \relax (x)\,\left (154\,x^2+154\,\mathrm {e}\,x\right )-1925\,x+77\,{\ln \relax (x)}^2-\mathrm {e}\,\left (1925\,x^2-154\,x^3\right )+77\,x^2\,{\mathrm {e}}^2-3850\,x^3+77\,x^4}{\ln \relax (x)\,\left (8\,x^4+8\,\mathrm {e}\,x^3\right )+4\,x^2\,{\ln \relax (x)}^2+4\,x^4\,{\mathrm {e}}^2+8\,x^5\,\mathrm {e}+4\,x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 22, normalized size = 1.00 \begin {gather*} - \frac {1925}{4 x^{2} + 4 e x + 4 \log {\relax (x )}} + \frac {77}{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________