Optimal. Leaf size=35 \[ 9-\frac {e^5+\frac {e^{2 x^2}}{6 x}}{x}-\frac {1}{3} (4-x) x \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 14, 2288} \begin {gather*} \frac {x^2}{3}-\frac {e^{2 x^2}}{6 x^2}-\frac {4 x}{3}-\frac {e^5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {3 e^5 x-4 x^3+2 x^4+e^{2 x^2} \left (1-2 x^2\right )}{x^3} \, dx\\ &=\frac {1}{3} \int \left (-\frac {e^{2 x^2} \left (-1+2 x^2\right )}{x^3}+\frac {3 e^5-4 x^2+2 x^3}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {e^{2 x^2} \left (-1+2 x^2\right )}{x^3} \, dx\right )+\frac {1}{3} \int \frac {3 e^5-4 x^2+2 x^3}{x^2} \, dx\\ &=-\frac {e^{2 x^2}}{6 x^2}+\frac {1}{3} \int \left (-4+\frac {3 e^5}{x^2}+2 x\right ) \, dx\\ &=-\frac {e^{2 x^2}}{6 x^2}-\frac {e^5}{x}-\frac {4 x}{3}+\frac {x^2}{3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 33, normalized size = 0.94 \begin {gather*} \frac {1}{3} \left (-\frac {e^{2 x^2}}{2 x^2}-\frac {3 e^5}{x}-4 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 29, normalized size = 0.83 \begin {gather*} \frac {2 \, x^{4} - 8 \, x^{3} - 6 \, x e^{5} - e^{\left (2 \, x^{2}\right )}}{6 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 29, normalized size = 0.83 \begin {gather*} \frac {2 \, x^{4} - 8 \, x^{3} - 6 \, x e^{5} - e^{\left (2 \, x^{2}\right )}}{6 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 28, normalized size = 0.80
method | result | size |
default | \(\frac {x^{2}}{3}-\frac {4 x}{3}-\frac {{\mathrm e}^{5}}{x}-\frac {{\mathrm e}^{2 x^{2}}}{6 x^{2}}\) | \(28\) |
risch | \(\frac {x^{2}}{3}-\frac {4 x}{3}-\frac {{\mathrm e}^{5}}{x}-\frac {{\mathrm e}^{2 x^{2}}}{6 x^{2}}\) | \(28\) |
norman | \(\frac {-\frac {4 x^{3}}{3}+\frac {x^{4}}{3}-x \,{\mathrm e}^{5}-\frac {{\mathrm e}^{2 x^{2}}}{6}}{x^{2}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 33, normalized size = 0.94 \begin {gather*} \frac {1}{3} \, x^{2} - \frac {4}{3} \, x - \frac {e^{5}}{x} - \frac {1}{3} \, {\rm Ei}\left (2 \, x^{2}\right ) + \frac {1}{3} \, \Gamma \left (-1, -2 \, x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 27, normalized size = 0.77 \begin {gather*} -\frac {{\mathrm {e}}^{2\,x^2}+6\,x\,{\mathrm {e}}^5+8\,x^3-2\,x^4}{6\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 26, normalized size = 0.74 \begin {gather*} \frac {x^{2}}{3} - \frac {4 x}{3} - \frac {e^{5}}{x} - \frac {e^{2 x^{2}}}{6 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________