Optimal. Leaf size=21 \[ \frac {1}{2} \left (\frac {1}{e^3}-x\right ) \left (-x+\frac {x}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 36, normalized size of antiderivative = 1.71, number of steps used = 15, number of rules used = 7, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {12, 6742, 2320, 2330, 2298, 2309, 2178} \begin {gather*} \frac {x^2}{2}-\frac {x}{2 e^3}+\frac {\left (1-e^3 x\right ) x}{2 e^3 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2298
Rule 2309
Rule 2320
Rule 2330
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-1+e^3 x+\left (1-2 e^3 x\right ) \log (x)+\left (-1+2 e^3 x\right ) \log ^2(x)}{\log ^2(x)} \, dx}{2 e^3}\\ &=\frac {\int \left (-1+2 e^3 x+\frac {-1+e^3 x}{\log ^2(x)}+\frac {1-2 e^3 x}{\log (x)}\right ) \, dx}{2 e^3}\\ &=-\frac {x}{2 e^3}+\frac {x^2}{2}+\frac {\int \frac {-1+e^3 x}{\log ^2(x)} \, dx}{2 e^3}+\frac {\int \frac {1-2 e^3 x}{\log (x)} \, dx}{2 e^3}\\ &=-\frac {x}{2 e^3}+\frac {x^2}{2}+\frac {x \left (1-e^3 x\right )}{2 e^3 \log (x)}+\frac {\int \left (\frac {1}{\log (x)}-\frac {2 e^3 x}{\log (x)}\right ) \, dx}{2 e^3}+\frac {\int \frac {1}{\log (x)} \, dx}{2 e^3}+\frac {\int \frac {-1+e^3 x}{\log (x)} \, dx}{e^3}\\ &=-\frac {x}{2 e^3}+\frac {x^2}{2}+\frac {x \left (1-e^3 x\right )}{2 e^3 \log (x)}+\frac {\text {li}(x)}{2 e^3}+\frac {\int \frac {1}{\log (x)} \, dx}{2 e^3}+\frac {\int \left (-\frac {1}{\log (x)}+\frac {e^3 x}{\log (x)}\right ) \, dx}{e^3}-\int \frac {x}{\log (x)} \, dx\\ &=-\frac {x}{2 e^3}+\frac {x^2}{2}+\frac {x \left (1-e^3 x\right )}{2 e^3 \log (x)}+\frac {\text {li}(x)}{e^3}-\frac {\int \frac {1}{\log (x)} \, dx}{e^3}+\int \frac {x}{\log (x)} \, dx-\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {x}{2 e^3}+\frac {x^2}{2}-\text {Ei}(2 \log (x))+\frac {x \left (1-e^3 x\right )}{2 e^3 \log (x)}+\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {x}{2 e^3}+\frac {x^2}{2}+\frac {x \left (1-e^3 x\right )}{2 e^3 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 23, normalized size = 1.10 \begin {gather*} \frac {x \left (-1+e^3 x\right ) (-1+\log (x))}{2 e^3 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 32, normalized size = 1.52 \begin {gather*} -\frac {{\left (x^{2} e^{3} - {\left (x^{2} e^{3} - x\right )} \log \relax (x) - x\right )} e^{\left (-3\right )}}{2 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 31, normalized size = 1.48 \begin {gather*} \frac {1}{2} \, {\left (x^{2} e^{3} - \frac {x^{2} e^{3}}{\log \relax (x)} - x + \frac {x}{\log \relax (x)}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 1.29
method | result | size |
risch | \(\frac {x^{2}}{2}-\frac {x \,{\mathrm e}^{-3}}{2}-\frac {{\mathrm e}^{-3} x \left (x \,{\mathrm e}^{3}-1\right )}{2 \ln \relax (x )}\) | \(27\) |
norman | \(\frac {-\frac {x^{2}}{2}+\frac {x \,{\mathrm e}^{-3}}{2}+\frac {x^{2} \ln \relax (x )}{2}-\frac {x \,{\mathrm e}^{-3} \ln \relax (x )}{2}}{\ln \relax (x )}\) | \(35\) |
default | \(\frac {{\mathrm e}^{-3} \left (x^{2} {\mathrm e}^{3}+2 \,{\mathrm e}^{3} \expIntegralEi \left (1, -2 \ln \relax (x )\right )-x +{\mathrm e}^{3} \left (-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )+\frac {x}{\ln \relax (x )}\right )}{2}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 44, normalized size = 2.10 \begin {gather*} \frac {1}{2} \, {\left (x^{2} e^{3} - 2 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) e^{3} + 2 \, e^{3} \Gamma \left (-1, -2 \, \log \relax (x)\right ) - x + {\rm Ei}\left (\log \relax (x)\right ) - \Gamma \left (-1, -\log \relax (x)\right )\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.19, size = 19, normalized size = 0.90 \begin {gather*} \frac {x\,{\mathrm {e}}^{-3}\,\left (\ln \relax (x)-1\right )\,\left (x\,{\mathrm {e}}^3-1\right )}{2\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 27, normalized size = 1.29 \begin {gather*} \frac {x^{2}}{2} - \frac {x}{2 e^{3}} + \frac {- x^{2} e^{3} + x}{2 e^{3} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________