Optimal. Leaf size=15 \[ x-\frac {-2+e^{e^x}+x}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2+x^2+e^{e^x} \left (1-e^x x\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^{e^x+x}}{x}+\frac {-2+e^{e^x}+x^2}{x^2}\right ) \, dx\\ &=-\int \frac {e^{e^x+x}}{x} \, dx+\int \frac {-2+e^{e^x}+x^2}{x^2} \, dx\\ &=-\int \frac {e^{e^x+x}}{x} \, dx+\int \left (\frac {e^{e^x}}{x^2}+\frac {-2+x^2}{x^2}\right ) \, dx\\ &=\int \frac {e^{e^x}}{x^2} \, dx-\int \frac {e^{e^x+x}}{x} \, dx+\int \frac {-2+x^2}{x^2} \, dx\\ &=\int \left (1-\frac {2}{x^2}\right ) \, dx+\int \frac {e^{e^x}}{x^2} \, dx-\int \frac {e^{e^x+x}}{x} \, dx\\ &=\frac {2}{x}+x+\int \frac {e^{e^x}}{x^2} \, dx-\int \frac {e^{e^x+x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 1.13 \begin {gather*} \frac {2}{x}-\frac {e^{e^x}}{x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 14, normalized size = 0.93 \begin {gather*} \frac {x^{2} - e^{\left (e^{x}\right )} + 2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 26, normalized size = 1.73 \begin {gather*} \frac {{\left (x^{2} e^{x} - e^{\left (x + e^{x}\right )} + 2 \, e^{x}\right )} e^{\left (-x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 15, normalized size = 1.00
method | result | size |
norman | \(\frac {2+x^{2}-{\mathrm e}^{{\mathrm e}^{x}}}{x}\) | \(15\) |
risch | \(x +\frac {2}{x}-\frac {{\mathrm e}^{{\mathrm e}^{x}}}{x}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 15, normalized size = 1.00 \begin {gather*} x - \frac {e^{\left (e^{x}\right )}}{x} + \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 12, normalized size = 0.80 \begin {gather*} x-\frac {{\mathrm {e}}^{{\mathrm {e}}^x}-2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 10, normalized size = 0.67 \begin {gather*} x - \frac {e^{e^{x}}}{x} + \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________