Optimal. Leaf size=26 \[ \frac {5}{-1+e^{2 x \left (2+\frac {x}{3 e^2}-\log (5)\right )}+x} \]
________________________________________________________________________________________
Rubi [F] time = 4.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15 e^2+e^{\frac {2 \left (6 e^2 x+x^2-3 e^2 x \log (5)\right )}{3 e^2}} \left (-60 e^2-20 x+30 e^2 \log (5)\right )}{3 \exp \left (2+\frac {4 \left (6 e^2 x+x^2-3 e^2 x \log (5)\right )}{3 e^2}\right )+\exp \left (2+\frac {2 \left (6 e^2 x+x^2-3 e^2 x \log (5)\right )}{3 e^2}\right ) (-6+6 x)+e^2 \left (3-6 x+3 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5^{1+2 x} \left (-3 25^x e^2-4 e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )} x+6 e^{2+4 x+\frac {2 x^2}{3 e^2}} (-2+\log (5))\right )}{3 e^2 \left (e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x (-1+x)\right )^2} \, dx\\ &=\frac {\int \frac {5^{1+2 x} \left (-3 25^x e^2-4 e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )} x+6 e^{2+4 x+\frac {2 x^2}{3 e^2}} (-2+\log (5))\right )}{\left (e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x (-1+x)\right )^2} \, dx}{3 e^2}\\ &=\frac {\int \left (-\frac {4\ 5^{1+2 x} x}{-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x}+\frac {5^{1+2 x} \left (-3 25^x e^2-4\ 25^x x+4\ 25^x x^2-12 e^{2+4 x+\frac {2 x^2}{3 e^2}} \left (1-\frac {\log (5)}{2}\right )\right )}{\left (25^x-e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}-25^x x\right )^2}\right ) \, dx}{3 e^2}\\ &=\frac {\int \frac {5^{1+2 x} \left (-3 25^x e^2-4\ 25^x x+4\ 25^x x^2-12 e^{2+4 x+\frac {2 x^2}{3 e^2}} \left (1-\frac {\log (5)}{2}\right )\right )}{\left (25^x-e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}-25^x x\right )^2} \, dx}{3 e^2}-\frac {4 \int \frac {5^{1+2 x} x}{-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x} \, dx}{3 e^2}\\ &=\frac {\int \left (-\frac {3\ 5^{1+4 x} e^2}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2}-\frac {4\ 5^{1+4 x} x}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2}+\frac {4\ 5^{1+4 x} x^2}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2}+\frac {6\ 5^{1+2 x} e^{2+4 x+\frac {2 x^2}{3 e^2}} (-2+\log (5))}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2}\right ) \, dx}{3 e^2}-\frac {4 \int \frac {5^{1+2 x} x}{-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x} \, dx}{3 e^2}\\ &=-\frac {4 \int \frac {5^{1+4 x} x}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{3 e^2}+\frac {4 \int \frac {5^{1+4 x} x^2}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{3 e^2}-\frac {4 \int \frac {5^{1+2 x} x}{-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x} \, dx}{3 e^2}-\frac {(2 (2-\log (5))) \int \frac {5^{1+2 x} e^{2+4 x+\frac {2 x^2}{3 e^2}}}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{e^2}-\int \frac {5^{1+4 x}}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx\\ &=-\frac {4 \int \frac {5^{1+4 x} x}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{3 e^2}+\frac {4 \int \frac {5^{1+4 x} x^2}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{3 e^2}-\frac {4 \int \frac {5^{1+2 x} x}{-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x} \, dx}{3 e^2}-\frac {(2 (2-\log (5))) \int \frac {5 e^{2+\frac {2 x^2}{3 e^2}+2 x (2+\log (5))}}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{e^2}-\int \frac {5^{1+4 x}}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx\\ &=-\frac {4 \int \frac {5^{1+4 x} x}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{3 e^2}+\frac {4 \int \frac {5^{1+4 x} x^2}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{3 e^2}-\frac {4 \int \frac {5^{1+2 x} x}{-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x} \, dx}{3 e^2}-\frac {(10 (2-\log (5))) \int \frac {e^{2+\frac {2 x^2}{3 e^2}+2 x (2+\log (5))}}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx}{e^2}-\int \frac {5^{1+4 x}}{\left (-25^x+e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 32, normalized size = 1.23 \begin {gather*} \frac {5^{1+2 x}}{e^{\frac {2}{3} x \left (6+\frac {x}{e^2}\right )}+25^x (-1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 40, normalized size = 1.54 \begin {gather*} \frac {5 \, e^{2}}{{\left (x - 1\right )} e^{2} + e^{\left (-\frac {2}{3} \, {\left (3 \, x e^{2} \log \relax (5) - x^{2} - 3 \, {\left (2 \, x + 1\right )} e^{2}\right )} e^{\left (-2\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 30, normalized size = 1.15 \begin {gather*} \frac {5}{x + e^{\left (-\frac {2}{3} \, {\left (3 \, x e^{2} \log \relax (5) - x^{2} - 6 \, x e^{2}\right )} e^{\left (-2\right )}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 28, normalized size = 1.08
method | result | size |
risch | \(\frac {5}{{\mathrm e}^{-\frac {2 x \left (3 \,{\mathrm e}^{2} \ln \relax (5)-6 \,{\mathrm e}^{2}-x \right ) {\mathrm e}^{-2}}{3}}+x -1}\) | \(28\) |
norman | \(\frac {5}{{\mathrm e}^{\frac {2 \left (-3 x \,{\mathrm e}^{2} \ln \relax (5)+6 \,{\mathrm e}^{2} x +x^{2}\right ) {\mathrm e}^{-2}}{3}}+x -1}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 31, normalized size = 1.19 \begin {gather*} \frac {5 \cdot 5^{2 \, x}}{5^{2 \, x} {\left (x - 1\right )} + e^{\left (\frac {2}{3} \, x^{2} e^{\left (-2\right )} + 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.09, size = 38, normalized size = 1.46 \begin {gather*} \frac {15\,{\mathrm {e}}^2}{3\,x\,{\mathrm {e}}^2-3\,{\mathrm {e}}^2+\frac {3\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{-2}\,x^2}{3}+4\,x+2}}{5^{2\,x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 32, normalized size = 1.23 \begin {gather*} \frac {5}{x + e^{\frac {2 \left (\frac {x^{2}}{3} - x e^{2} \log {\relax (5 )} + 2 x e^{2}\right )}{e^{2}}} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________