Optimal. Leaf size=30 \[ \frac {1}{5} \log \left (\left (2 x-4 e^{-x+x \log (2)} \left (-e^x+x\right )\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.82, size = 34, normalized size = 1.13 \begin {gather*} -\frac {2 x}{5}+\frac {2}{5} \log \left (2^{1+x} e^x-2^{1+x} x+e^x x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 30, normalized size = 1.00 \begin {gather*} \frac {2}{5} \, x \log \relax (2) - \frac {2}{5} \, x + \frac {2}{5} \, \log \left (x e^{\left (-x \log \relax (2) + x\right )} - 2 \, x + 2 \, e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 30, normalized size = 1.00 \begin {gather*} \frac {2}{5} \, x \log \relax (2) - \frac {2}{5} \, x + \frac {2}{5} \, \log \left (x e^{\left (-x \log \relax (2) + x\right )} - 2 \, x + 2 \, e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 32, normalized size = 1.07
method | result | size |
norman | \(\left (\frac {2 \ln \relax (2)}{5}-\frac {2}{5}\right ) x +\frac {2 \ln \left (10 \,{\mathrm e}^{x}+5 x \,{\mathrm e}^{-x \ln \relax (2)+x}-10 x \right )}{5}\) | \(32\) |
risch | \(\frac {2 \ln \relax (x )}{5}+\frac {2 x \ln \relax (2)}{5}-\frac {2 x}{5}+\frac {2 \ln \left (\left (\frac {1}{2}\right )^{x} {\mathrm e}^{x}-\frac {2 \left (x -{\mathrm e}^{x}\right )}{x}\right )}{5}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 43, normalized size = 1.43 \begin {gather*} -\frac {2}{5} \, x + \frac {2}{5} \, \log \left (-x + e^{x}\right ) + \frac {2}{5} \, \log \left (\frac {2 \cdot 2^{x} {\left (x - e^{x}\right )} - x e^{x}}{2 \, {\left (x - e^{x}\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 29, normalized size = 0.97 \begin {gather*} \frac {2\,\ln \left (2\,{\mathrm {e}}^x-2\,x+\frac {x\,{\mathrm {e}}^x}{2^x}\right )}{5}+x\,\left (\frac {\ln \relax (4)}{5}-\frac {2}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.33, size = 37, normalized size = 1.23 \begin {gather*} - \frac {2 x}{5} + \frac {2 x \log {\relax (2 )}}{5} + \frac {2 \log {\left (x e^{x} e^{- x \log {\relax (2 )}} - 2 x + 2 e^{x} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________