Optimal. Leaf size=28 \[ \frac {x^4}{\left (7-e^2+\frac {x}{4 \log \left (\frac {1}{3} x \log (3)\right )}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 90.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32 x^4 \log \left (\frac {1}{3} x \log (3)\right )-32 x^4 \log ^2\left (\frac {1}{3} x \log (3)\right )+\left (-1792 x^3+256 e^2 x^3\right ) \log ^3\left (\frac {1}{3} x \log (3)\right )}{-x^3+\left (-84 x^2+12 e^2 x^2\right ) \log \left (\frac {1}{3} x \log (3)\right )+\left (-2352 x+672 e^2 x-48 e^4 x\right ) \log ^2\left (\frac {1}{3} x \log (3)\right )+\left (-21952+9408 e^2-1344 e^4+64 e^6\right ) \log ^3\left (\frac {1}{3} x \log (3)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 x^3 \log \left (\frac {1}{3} x \log (3)\right ) \left (x+x \log \left (\frac {1}{3} x \log (3)\right )-8 \left (-7+e^2\right ) \log ^2\left (\frac {1}{3} x \log (3)\right )\right )}{\left (x-4 \left (-7+e^2\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^3} \, dx\\ &=32 \int \frac {x^3 \log \left (\frac {1}{3} x \log (3)\right ) \left (x+x \log \left (\frac {1}{3} x \log (3)\right )-8 \left (-7+e^2\right ) \log ^2\left (\frac {1}{3} x \log (3)\right )\right )}{\left (x-4 \left (-7+e^2\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^3} \, dx\\ &=32 \int \left (\frac {x^3}{8 \left (-7+e^2\right )^2}+\frac {5 x^4}{16 \left (7-e^2\right )^2 \left (-x-28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )}+\frac {\left (-28+4 e^2-x\right ) x^5}{16 \left (7-e^2\right )^2 \left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^3}+\frac {x^4 \left (7-e^2+x\right )}{4 \left (7-e^2\right )^2 \left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^2}\right ) \, dx\\ &=\frac {x^4}{\left (7-e^2\right )^2}+\frac {2 \int \frac {\left (-28+4 e^2-x\right ) x^5}{\left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^3} \, dx}{\left (7-e^2\right )^2}+\frac {8 \int \frac {x^4 \left (7-e^2+x\right )}{\left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^2} \, dx}{\left (7-e^2\right )^2}+\frac {10 \int \frac {x^4}{-x-28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )} \, dx}{\left (7-e^2\right )^2}\\ &=\frac {x^4}{\left (7-e^2\right )^2}+\frac {2 \int \left (\frac {x^6}{\left (-x-28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^3}+\frac {4 \left (-7+e^2\right ) x^5}{\left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^3}\right ) \, dx}{\left (7-e^2\right )^2}+\frac {8 \int \left (\frac {\left (7-e^2\right ) x^4}{\left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^2}+\frac {x^5}{\left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^2}\right ) \, dx}{\left (7-e^2\right )^2}+\frac {10 \int \frac {x^4}{-x-28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )} \, dx}{\left (7-e^2\right )^2}\\ &=\frac {x^4}{\left (7-e^2\right )^2}+\frac {2 \int \frac {x^6}{\left (-x-28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^3} \, dx}{\left (7-e^2\right )^2}+\frac {8 \int \frac {x^5}{\left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^2} \, dx}{\left (7-e^2\right )^2}+\frac {10 \int \frac {x^4}{-x-28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )} \, dx}{\left (7-e^2\right )^2}-\frac {8 \int \frac {x^5}{\left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^3} \, dx}{7-e^2}+\frac {8 \int \frac {x^4}{\left (x+28 \left (1-\frac {e^2}{7}\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^2} \, dx}{7-e^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.39, size = 34, normalized size = 1.21 \begin {gather*} \frac {16 x^4 \log ^2\left (\frac {1}{3} x \log (3)\right )}{\left (x-4 \left (-7+e^2\right ) \log \left (\frac {1}{3} x \log (3)\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 53, normalized size = 1.89 \begin {gather*} \frac {16 \, x^{4} \log \left (\frac {1}{3} \, x \log \relax (3)\right )^{2}}{16 \, {\left (e^{4} - 14 \, e^{2} + 49\right )} \log \left (\frac {1}{3} \, x \log \relax (3)\right )^{2} + x^{2} - 8 \, {\left (x e^{2} - 7 \, x\right )} \log \left (\frac {1}{3} \, x \log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.50, size = 154, normalized size = 5.50 \begin {gather*} \frac {16 \, {\left (x^{4} \log \relax (3)^{2} - 2 \, x^{4} \log \relax (3) \log \left (x \log \relax (3)\right ) + x^{4} \log \left (x \log \relax (3)\right )^{2}\right )}}{8 \, x e^{2} \log \relax (3) + 16 \, e^{4} \log \relax (3)^{2} - 224 \, e^{2} \log \relax (3)^{2} - 8 \, x e^{2} \log \left (x \log \relax (3)\right ) - 32 \, e^{4} \log \relax (3) \log \left (x \log \relax (3)\right ) + 448 \, e^{2} \log \relax (3) \log \left (x \log \relax (3)\right ) + 16 \, e^{4} \log \left (x \log \relax (3)\right )^{2} - 224 \, e^{2} \log \left (x \log \relax (3)\right )^{2} + x^{2} - 56 \, x \log \relax (3) + 784 \, \log \relax (3)^{2} + 56 \, x \log \left (x \log \relax (3)\right ) - 1568 \, \log \relax (3) \log \left (x \log \relax (3)\right ) + 784 \, \log \left (x \log \relax (3)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 38, normalized size = 1.36
method | result | size |
norman | \(\frac {16 x^{4} \ln \left (\frac {x \ln \relax (3)}{3}\right )^{2}}{\left (4 \ln \left (\frac {x \ln \relax (3)}{3}\right ) {\mathrm e}^{2}-28 \ln \left (\frac {x \ln \relax (3)}{3}\right )-x \right )^{2}}\) | \(38\) |
risch | \(\frac {x^{4}}{{\mathrm e}^{4}-14 \,{\mathrm e}^{2}+49}+\frac {x^{5} \left (8 \ln \left (\frac {x \ln \relax (3)}{3}\right ) {\mathrm e}^{2}-x -56 \ln \left (\frac {x \ln \relax (3)}{3}\right )\right )}{\left ({\mathrm e}^{4}-14 \,{\mathrm e}^{2}+49\right ) \left (4 \ln \left (\frac {x \ln \relax (3)}{3}\right ) {\mathrm e}^{2}-28 \ln \left (\frac {x \ln \relax (3)}{3}\right )-x \right )^{2}}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 199, normalized size = 7.11 \begin {gather*} -\frac {16 \, {\left (2 \, x^{4} {\left (\log \relax (3) - \log \left (\log \relax (3)\right )\right )} \log \relax (x) - x^{4} \log \relax (x)^{2} - {\left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (3)\right ) + \log \left (\log \relax (3)\right )^{2}\right )} x^{4}\right )}}{16 \, {\left (e^{4} - 14 \, e^{2} + 49\right )} \log \relax (x)^{2} + 8 \, {\left ({\left (\log \relax (3) - \log \left (\log \relax (3)\right )\right )} e^{2} - 7 \, \log \relax (3) + 7 \, \log \left (\log \relax (3)\right )\right )} x + x^{2} + 16 \, {\left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (3)\right ) + \log \left (\log \relax (3)\right )^{2}\right )} e^{4} - 224 \, {\left (\log \relax (3)^{2} - 2 \, \log \relax (3) \log \left (\log \relax (3)\right ) + \log \left (\log \relax (3)\right )^{2}\right )} e^{2} + 784 \, \log \relax (3)^{2} - 8 \, {\left (x {\left (e^{2} - 7\right )} + 4 \, {\left (\log \relax (3) - \log \left (\log \relax (3)\right )\right )} e^{4} - 56 \, {\left (\log \relax (3) - \log \left (\log \relax (3)\right )\right )} e^{2} + 196 \, \log \relax (3) - 196 \, \log \left (\log \relax (3)\right )\right )} \log \relax (x) - 1568 \, \log \relax (3) \log \left (\log \relax (3)\right ) + 784 \, \log \left (\log \relax (3)\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {32\,x^4\,{\ln \left (\frac {x\,\ln \relax (3)}{3}\right )}^2-{\ln \left (\frac {x\,\ln \relax (3)}{3}\right )}^3\,\left (256\,x^3\,{\mathrm {e}}^2-1792\,x^3\right )+32\,x^4\,\ln \left (\frac {x\,\ln \relax (3)}{3}\right )}{{\ln \left (\frac {x\,\ln \relax (3)}{3}\right )}^3\,\left (9408\,{\mathrm {e}}^2-1344\,{\mathrm {e}}^4+64\,{\mathrm {e}}^6-21952\right )-{\ln \left (\frac {x\,\ln \relax (3)}{3}\right )}^2\,\left (2352\,x-672\,x\,{\mathrm {e}}^2+48\,x\,{\mathrm {e}}^4\right )+\ln \left (\frac {x\,\ln \relax (3)}{3}\right )\,\left (12\,x^2\,{\mathrm {e}}^2-84\,x^2\right )-x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 122, normalized size = 4.36 \begin {gather*} \frac {x^{4}}{- 14 e^{2} + 49 + e^{4}} + \frac {- x^{6} + \left (- 56 x^{5} + 8 x^{5} e^{2}\right ) \log {\left (\frac {x \log {\relax (3 )}}{3} \right )}}{- 14 x^{2} e^{2} + 49 x^{2} + x^{2} e^{4} + \left (- 1176 x e^{2} - 8 x e^{6} + 2744 x + 168 x e^{4}\right ) \log {\left (\frac {x \log {\relax (3 )}}{3} \right )} + \left (- 448 e^{6} - 21952 e^{2} + 38416 + 16 e^{8} + 4704 e^{4}\right ) \log {\left (\frac {x \log {\relax (3 )}}{3} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________