Optimal. Leaf size=29 \[ -e^{(14+x)^2}-x+\left (4+x \left (x-e^{2+x} x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 52, normalized size of antiderivative = 1.79, number of steps used = 31, number of rules used = 6, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {2227, 2209, 2196, 2176, 2194, 1593} \begin {gather*} -2 e^{x+2} x^4+e^{2 x+4} x^4+x^4-8 e^{x+2} x^2+8 x^2-x-e^{(x+14)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 2209
Rule 2227
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x+8 x^2+x^4+\int e^{196+28 x+x^2} (-28-2 x) \, dx+\int e^{2+x} \left (-16 x-8 x^2-8 x^3-2 x^4\right ) \, dx+\int e^{4+2 x} \left (4 x^3+2 x^4\right ) \, dx\\ &=-x+8 x^2+x^4+\int e^{(14+x)^2} (-28-2 x) \, dx+\int e^{4+2 x} x^3 (4+2 x) \, dx+\int \left (-16 e^{2+x} x-8 e^{2+x} x^2-8 e^{2+x} x^3-2 e^{2+x} x^4\right ) \, dx\\ &=-e^{(14+x)^2}-x+8 x^2+x^4-2 \int e^{2+x} x^4 \, dx-8 \int e^{2+x} x^2 \, dx-8 \int e^{2+x} x^3 \, dx-16 \int e^{2+x} x \, dx+\int \left (4 e^{4+2 x} x^3+2 e^{4+2 x} x^4\right ) \, dx\\ &=-e^{(14+x)^2}-x-16 e^{2+x} x+8 x^2-8 e^{2+x} x^2-8 e^{2+x} x^3+x^4-2 e^{2+x} x^4+2 \int e^{4+2 x} x^4 \, dx+4 \int e^{4+2 x} x^3 \, dx+8 \int e^{2+x} x^3 \, dx+16 \int e^{2+x} \, dx+16 \int e^{2+x} x \, dx+24 \int e^{2+x} x^2 \, dx\\ &=16 e^{2+x}-e^{(14+x)^2}-x+8 x^2+16 e^{2+x} x^2+2 e^{4+2 x} x^3+x^4-2 e^{2+x} x^4+e^{4+2 x} x^4-4 \int e^{4+2 x} x^3 \, dx-6 \int e^{4+2 x} x^2 \, dx-16 \int e^{2+x} \, dx-24 \int e^{2+x} x^2 \, dx-48 \int e^{2+x} x \, dx\\ &=-e^{(14+x)^2}-x-48 e^{2+x} x+8 x^2-8 e^{2+x} x^2-3 e^{4+2 x} x^2+x^4-2 e^{2+x} x^4+e^{4+2 x} x^4+6 \int e^{4+2 x} x \, dx+6 \int e^{4+2 x} x^2 \, dx+48 \int e^{2+x} \, dx+48 \int e^{2+x} x \, dx\\ &=48 e^{2+x}-e^{(14+x)^2}-x+3 e^{4+2 x} x+8 x^2-8 e^{2+x} x^2+x^4-2 e^{2+x} x^4+e^{4+2 x} x^4-3 \int e^{4+2 x} \, dx-6 \int e^{4+2 x} x \, dx-48 \int e^{2+x} \, dx\\ &=-e^{(14+x)^2}-\frac {3}{2} e^{4+2 x}-x+8 x^2-8 e^{2+x} x^2+x^4-2 e^{2+x} x^4+e^{4+2 x} x^4+3 \int e^{4+2 x} \, dx\\ &=-e^{(14+x)^2}-x+8 x^2-8 e^{2+x} x^2+x^4-2 e^{2+x} x^4+e^{4+2 x} x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 47, normalized size = 1.62 \begin {gather*} -e^{(14+x)^2}-x+8 x^2+x^4+e^{4+2 x} x^4-2 e^{2+x} x \left (4 x+x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 48, normalized size = 1.66 \begin {gather*} x^{4} e^{\left (2 \, x + 4\right )} + x^{4} + 8 \, x^{2} - 2 \, {\left (x^{4} + 4 \, x^{2}\right )} e^{\left (x + 2\right )} - x - e^{\left (x^{2} + 28 \, x + 196\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 48, normalized size = 1.66 \begin {gather*} x^{4} e^{\left (2 \, x + 4\right )} + x^{4} + 8 \, x^{2} - 2 \, {\left (x^{4} + 4 \, x^{2}\right )} e^{\left (x + 2\right )} - x - e^{\left (x^{2} + 28 \, x + 196\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 47, normalized size = 1.62
method | result | size |
risch | \(-{\mathrm e}^{\left (x +14\right )^{2}}+{\mathrm e}^{2 x +4} x^{4}+\left (-2 x^{4}-8 x^{2}\right ) {\mathrm e}^{2+x}+x^{4}+8 x^{2}-x\) | \(47\) |
norman | \(x^{4}+{\mathrm e}^{2 x +4} x^{4}-x +8 x^{2}-8 x^{2} {\mathrm e}^{2+x}-2 \,{\mathrm e}^{2+x} x^{4}-{\mathrm e}^{x^{2}+28 x +196}\) | \(52\) |
default | \(-x -{\mathrm e}^{x^{2}+28 x +196}+{\mathrm e}^{2 x +4} \left (2+x \right )^{4}-8 \,{\mathrm e}^{2 x +4} \left (2+x \right )^{3}+24 \,{\mathrm e}^{2 x +4} \left (2+x \right )^{2}-32 \left (2+x \right ) {\mathrm e}^{2 x +4}+16 \,{\mathrm e}^{2 x +4}-56 \,{\mathrm e}^{2+x} \left (2+x \right )^{2}+16 \,{\mathrm e}^{2+x} \left (2+x \right )^{3}+96 \,{\mathrm e}^{2+x} \left (2+x \right )-64 \,{\mathrm e}^{2+x}-2 \,{\mathrm e}^{2+x} \left (2+x \right )^{4}+8 x^{2}+x^{4}\) | \(129\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 51, normalized size = 1.76 \begin {gather*} x^{4} e^{\left (2 \, x + 4\right )} + x^{4} + 8 \, x^{2} - 2 \, {\left (x^{4} e^{2} + 4 \, x^{2} e^{2}\right )} e^{x} - x - e^{\left (x^{2} + 28 \, x + 196\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 51, normalized size = 1.76 \begin {gather*} x^4\,{\mathrm {e}}^{2\,x+4}-{\mathrm {e}}^{x^2+28\,x+196}-8\,x^2\,{\mathrm {e}}^{x+2}-2\,x^4\,{\mathrm {e}}^{x+2}-x+8\,x^2+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 46, normalized size = 1.59 \begin {gather*} x^{4} e^{2 x + 4} + x^{4} + 8 x^{2} - x + \left (- 2 x^{4} - 8 x^{2}\right ) e^{x + 2} - e^{x^{2} + 28 x + 196} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________