Optimal. Leaf size=28 \[ \frac {25}{4}+\frac {1}{45} x \left (1+x-e^{-4/x} x^2 \log ^2(x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{45} e^{-4/x} \left (e^{4/x} (1+2 x)-2 x^2 \log (x)+\left (-4 x-3 x^2\right ) \log ^2(x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{45} \int e^{-4/x} \left (e^{4/x} (1+2 x)-2 x^2 \log (x)+\left (-4 x-3 x^2\right ) \log ^2(x)\right ) \, dx\\ &=\frac {1}{45} \int \left (1+2 x-2 e^{-4/x} x^2 \log (x)-e^{-4/x} x (4+3 x) \log ^2(x)\right ) \, dx\\ &=\frac {x}{45}+\frac {x^2}{45}-\frac {1}{45} \int e^{-4/x} x (4+3 x) \log ^2(x) \, dx-\frac {2}{45} \int e^{-4/x} x^2 \log (x) \, dx\\ &=\frac {x}{45}+\frac {x^2}{45}-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)-\frac {1}{45} \int \left (4 e^{-4/x} x \log ^2(x)+3 e^{-4/x} x^2 \log ^2(x)\right ) \, dx+\frac {2}{45} \int \frac {1}{3} \left (e^{-4/x} \left (8-2 x+x^2\right )+\frac {32 \text {Ei}\left (-\frac {4}{x}\right )}{x}\right ) \, dx\\ &=\frac {x}{45}+\frac {x^2}{45}-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)+\frac {2}{135} \int \left (e^{-4/x} \left (8-2 x+x^2\right )+\frac {32 \text {Ei}\left (-\frac {4}{x}\right )}{x}\right ) \, dx-\frac {1}{15} \int e^{-4/x} x^2 \log ^2(x) \, dx-\frac {4}{45} \int e^{-4/x} x \log ^2(x) \, dx\\ &=\frac {x}{45}+\frac {x^2}{45}-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)+\frac {2}{135} \int e^{-4/x} \left (8-2 x+x^2\right ) \, dx-\frac {1}{15} \int e^{-4/x} x^2 \log ^2(x) \, dx-\frac {4}{45} \int e^{-4/x} x \log ^2(x) \, dx+\frac {64}{135} \int \frac {\text {Ei}\left (-\frac {4}{x}\right )}{x} \, dx\\ &=\frac {x}{45}+\frac {x^2}{45}-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)+\frac {2}{135} \int \left (8 e^{-4/x}-2 e^{-4/x} x+e^{-4/x} x^2\right ) \, dx-\frac {1}{15} \int e^{-4/x} x^2 \log ^2(x) \, dx-\frac {4}{45} \int e^{-4/x} x \log ^2(x) \, dx-\frac {64}{135} \operatorname {Subst}\left (\int \frac {\text {Ei}(-4 x)}{x} \, dx,x,\frac {1}{x}\right )\\ &=\frac {x}{45}+\frac {x^2}{45}-\frac {64}{135} \left (E_1\left (\frac {4}{x}\right )+\text {Ei}\left (-\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)+\frac {2}{135} \int e^{-4/x} x^2 \, dx-\frac {4}{135} \int e^{-4/x} x \, dx-\frac {1}{15} \int e^{-4/x} x^2 \log ^2(x) \, dx-\frac {4}{45} \int e^{-4/x} x \log ^2(x) \, dx+\frac {16}{135} \int e^{-4/x} \, dx+\frac {64}{135} \operatorname {Subst}\left (\int \frac {E_1(4 x)}{x} \, dx,x,\frac {1}{x}\right )\\ &=\frac {x}{45}+\frac {16}{135} e^{-4/x} x+\frac {x^2}{45}-\frac {2}{135} e^{-4/x} x^2+\frac {2}{405} e^{-4/x} x^3+\frac {256 \, _3F_3\left (1,1,1;2,2,2;-\frac {4}{x}\right )}{135 x}-\frac {64}{135} \left (E_1\left (\frac {4}{x}\right )+\text {Ei}\left (-\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-\frac {32}{135} \log ^2\left (\frac {4}{x}\right )+\frac {64}{135} \gamma \log (x)-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)-\frac {8}{405} \int e^{-4/x} x \, dx+\frac {8}{135} \int e^{-4/x} \, dx-\frac {1}{15} \int e^{-4/x} x^2 \log ^2(x) \, dx-\frac {4}{45} \int e^{-4/x} x \log ^2(x) \, dx-\frac {64}{135} \int \frac {e^{-4/x}}{x} \, dx\\ &=\frac {x}{45}+\frac {8}{45} e^{-4/x} x+\frac {x^2}{45}-\frac {2}{81} e^{-4/x} x^2+\frac {2}{405} e^{-4/x} x^3+\frac {64 \text {Ei}\left (-\frac {4}{x}\right )}{135}+\frac {256 \, _3F_3\left (1,1,1;2,2,2;-\frac {4}{x}\right )}{135 x}-\frac {64}{135} \left (E_1\left (\frac {4}{x}\right )+\text {Ei}\left (-\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-\frac {32}{135} \log ^2\left (\frac {4}{x}\right )+\frac {64}{135} \gamma \log (x)-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)+\frac {16}{405} \int e^{-4/x} \, dx-\frac {1}{15} \int e^{-4/x} x^2 \log ^2(x) \, dx-\frac {4}{45} \int e^{-4/x} x \log ^2(x) \, dx-\frac {32}{135} \int \frac {e^{-4/x}}{x} \, dx\\ &=\frac {x}{45}+\frac {88}{405} e^{-4/x} x+\frac {x^2}{45}-\frac {2}{81} e^{-4/x} x^2+\frac {2}{405} e^{-4/x} x^3+\frac {32 \text {Ei}\left (-\frac {4}{x}\right )}{45}+\frac {256 \, _3F_3\left (1,1,1;2,2,2;-\frac {4}{x}\right )}{135 x}-\frac {64}{135} \left (E_1\left (\frac {4}{x}\right )+\text {Ei}\left (-\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-\frac {32}{135} \log ^2\left (\frac {4}{x}\right )+\frac {64}{135} \gamma \log (x)-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)-\frac {1}{15} \int e^{-4/x} x^2 \log ^2(x) \, dx-\frac {4}{45} \int e^{-4/x} x \log ^2(x) \, dx-\frac {64}{405} \int \frac {e^{-4/x}}{x} \, dx\\ &=\frac {x}{45}+\frac {88}{405} e^{-4/x} x+\frac {x^2}{45}-\frac {2}{81} e^{-4/x} x^2+\frac {2}{405} e^{-4/x} x^3+\frac {352 \text {Ei}\left (-\frac {4}{x}\right )}{405}+\frac {256 \, _3F_3\left (1,1,1;2,2,2;-\frac {4}{x}\right )}{135 x}-\frac {64}{135} \left (E_1\left (\frac {4}{x}\right )+\text {Ei}\left (-\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-\frac {32}{135} \log ^2\left (\frac {4}{x}\right )+\frac {64}{135} \gamma \log (x)-\frac {16}{135} e^{-4/x} x \log (x)+\frac {4}{135} e^{-4/x} x^2 \log (x)-\frac {2}{135} e^{-4/x} x^3 \log (x)-\frac {64}{135} \text {Ei}\left (-\frac {4}{x}\right ) \log (x)-\frac {1}{15} \int e^{-4/x} x^2 \log ^2(x) \, dx-\frac {4}{45} \int e^{-4/x} x \log ^2(x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 25, normalized size = 0.89 \begin {gather*} \frac {1}{45} \left (x+x^2-e^{-4/x} x^3 \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 30, normalized size = 1.07 \begin {gather*} -\frac {1}{45} \, {\left (x^{3} \log \relax (x)^{2} - {\left (x^{2} + x\right )} e^{\frac {4}{x}}\right )} e^{\left (-\frac {4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 24, normalized size = 0.86 \begin {gather*} -\frac {1}{45} \, x^{3} e^{\left (-\frac {4}{x}\right )} \log \relax (x)^{2} + \frac {1}{45} \, x^{2} + \frac {1}{45} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 25, normalized size = 0.89
method | result | size |
risch | \(\frac {x}{45}-\frac {x^{3} \ln \relax (x )^{2} {\mathrm e}^{-\frac {4}{x}}}{45}+\frac {x^{2}}{45}\) | \(25\) |
default | \(\frac {x}{45}-\frac {x^{3} \ln \relax (x )^{2} {\mathrm e}^{-\frac {4}{x}}}{45}+\frac {x^{2}}{45}\) | \(27\) |
norman | \(\left (\frac {x \,{\mathrm e}^{\frac {4}{x}}}{45}+\frac {x^{2} {\mathrm e}^{\frac {4}{x}}}{45}-\frac {x^{3} \ln \relax (x )^{2}}{45}\right ) {\mathrm e}^{-\frac {4}{x}}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 24, normalized size = 0.86 \begin {gather*} -\frac {1}{45} \, x^{3} e^{\left (-\frac {4}{x}\right )} \log \relax (x)^{2} + \frac {1}{45} \, x^{2} + \frac {1}{45} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.75, size = 24, normalized size = 0.86 \begin {gather*} \frac {x}{45}+\frac {x^2}{45}-\frac {x^3\,{\mathrm {e}}^{-\frac {4}{x}}\,{\ln \relax (x)}^2}{45} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 22, normalized size = 0.79 \begin {gather*} - \frac {x^{3} e^{- \frac {4}{x}} \log {\relax (x )}^{2}}{45} + \frac {x^{2}}{45} + \frac {x}{45} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________