Optimal. Leaf size=20 \[ 5-\log \left (\frac {1}{5 e^{390622}}+e^{x/4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 16, normalized size of antiderivative = 0.80, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {12, 2246, 31} \begin {gather*} -\log \left (5 e^{\frac {x}{4}+390622}+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 2246
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (5 \int \frac {e^{390622+\frac {x}{4}}}{4+20 e^{390622+\frac {x}{4}}} \, dx\right )\\ &=-\left (20 \operatorname {Subst}\left (\int \frac {1}{4+20 x} \, dx,x,e^{390622+\frac {x}{4}}\right )\right )\\ &=-\log \left (1+5 e^{390622+\frac {x}{4}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.80 \begin {gather*} -\log \left (1+5 e^{390622+\frac {x}{4}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.32, size = 13, normalized size = 0.65 \begin {gather*} -\log \left (5 \, e^{\left (\frac {1}{4} \, x + 390622\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 13, normalized size = 0.65 \begin {gather*} -\log \left (5 \, e^{\left (\frac {1}{4} \, x + 390622\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 13, normalized size = 0.65
method | result | size |
risch | \(-\ln \left ({\mathrm e}^{\frac {x}{4}}+\frac {{\mathrm e}^{-390622}}{5}\right )\) | \(13\) |
derivativedivides | \(-\ln \left (20 \,{\mathrm e}^{390622} {\mathrm e}^{\frac {x}{4}}+4\right )\) | \(14\) |
default | \(-\ln \left (5 \,{\mathrm e}^{390622} {\mathrm e}^{\frac {x}{4}}+1\right )\) | \(14\) |
norman | \(-\ln \left (20 \,{\mathrm e}^{390622} {\mathrm e}^{\frac {x}{4}}+4\right )\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 13, normalized size = 0.65 \begin {gather*} -\log \left (5 \, e^{\left (\frac {1}{4} \, x + 390622\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 13, normalized size = 0.65 \begin {gather*} -\ln \left (5\,{\mathrm {e}}^{\frac {x}{4}+390622}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.70 \begin {gather*} - \log {\left (e^{\frac {x}{4}} + \frac {1}{5 e^{390622}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________