Optimal. Leaf size=29 \[ e^{5+x} \left (5-x-x^2\right ) \left (-4+\frac {4}{\log (x-\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{5+x} (4-4 \log (x-\log (x))) \left (5-6 x+x^3+\left (4 x^2-3 x^3-x^4+\left (-4 x+3 x^2+x^3\right ) \log (x)\right ) \log (x-\log (x))+\left (-4 x^2+3 x^3+x^4+\left (4 x-3 x^2-x^3\right ) \log (x)\right ) \log ^2(x-\log (x))\right )}{\log (x-\log (x)) \left (\left (x^2-x \log (x)\right ) \log (x-\log (x))+\left (-x^2+x \log (x)\right ) \log ^2(x-\log (x))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{5+x} (1-x) \left (5-x-x^2+x (4+x) (x-\log (x)) \log (x-\log (x))-x (4+x) (x-\log (x)) \log ^2(x-\log (x))\right )}{x (x-\log (x)) \log ^2(x-\log (x))} \, dx\\ &=4 \int \frac {e^{5+x} (1-x) \left (5-x-x^2+x (4+x) (x-\log (x)) \log (x-\log (x))-x (4+x) (x-\log (x)) \log ^2(x-\log (x))\right )}{x (x-\log (x)) \log ^2(x-\log (x))} \, dx\\ &=4 \int \left (e^{5+x} (-1+x) (4+x)+\frac {e^{5+x} \left (5-6 x+x^3\right )}{x (x-\log (x)) \log ^2(x-\log (x))}-\frac {e^{5+x} (-1+x) (4+x)}{\log (x-\log (x))}\right ) \, dx\\ &=4 \int e^{5+x} (-1+x) (4+x) \, dx+4 \int \frac {e^{5+x} \left (5-6 x+x^3\right )}{x (x-\log (x)) \log ^2(x-\log (x))} \, dx-4 \int \frac {e^{5+x} (-1+x) (4+x)}{\log (x-\log (x))} \, dx\\ &=4 \int \left (-4 e^{5+x}+3 e^{5+x} x+e^{5+x} x^2\right ) \, dx+4 \int \left (-\frac {6 e^{5+x}}{(x-\log (x)) \log ^2(x-\log (x))}+\frac {5 e^{5+x}}{x (x-\log (x)) \log ^2(x-\log (x))}+\frac {e^{5+x} x^2}{(x-\log (x)) \log ^2(x-\log (x))}\right ) \, dx-4 \int \left (-\frac {4 e^{5+x}}{\log (x-\log (x))}+\frac {3 e^{5+x} x}{\log (x-\log (x))}+\frac {e^{5+x} x^2}{\log (x-\log (x))}\right ) \, dx\\ &=4 \int e^{5+x} x^2 \, dx+4 \int \frac {e^{5+x} x^2}{(x-\log (x)) \log ^2(x-\log (x))} \, dx-4 \int \frac {e^{5+x} x^2}{\log (x-\log (x))} \, dx+12 \int e^{5+x} x \, dx-12 \int \frac {e^{5+x} x}{\log (x-\log (x))} \, dx-16 \int e^{5+x} \, dx+16 \int \frac {e^{5+x}}{\log (x-\log (x))} \, dx+20 \int \frac {e^{5+x}}{x (x-\log (x)) \log ^2(x-\log (x))} \, dx-24 \int \frac {e^{5+x}}{(x-\log (x)) \log ^2(x-\log (x))} \, dx\\ &=-16 e^{5+x}+12 e^{5+x} x+4 e^{5+x} x^2+4 \int \frac {e^{5+x} x^2}{(x-\log (x)) \log ^2(x-\log (x))} \, dx-4 \int \frac {e^{5+x} x^2}{\log (x-\log (x))} \, dx-8 \int e^{5+x} x \, dx-12 \int e^{5+x} \, dx-12 \int \frac {e^{5+x} x}{\log (x-\log (x))} \, dx+16 \int \frac {e^{5+x}}{\log (x-\log (x))} \, dx+20 \int \frac {e^{5+x}}{x (x-\log (x)) \log ^2(x-\log (x))} \, dx-24 \int \frac {e^{5+x}}{(x-\log (x)) \log ^2(x-\log (x))} \, dx\\ &=-28 e^{5+x}+4 e^{5+x} x+4 e^{5+x} x^2+4 \int \frac {e^{5+x} x^2}{(x-\log (x)) \log ^2(x-\log (x))} \, dx-4 \int \frac {e^{5+x} x^2}{\log (x-\log (x))} \, dx+8 \int e^{5+x} \, dx-12 \int \frac {e^{5+x} x}{\log (x-\log (x))} \, dx+16 \int \frac {e^{5+x}}{\log (x-\log (x))} \, dx+20 \int \frac {e^{5+x}}{x (x-\log (x)) \log ^2(x-\log (x))} \, dx-24 \int \frac {e^{5+x}}{(x-\log (x)) \log ^2(x-\log (x))} \, dx\\ &=-20 e^{5+x}+4 e^{5+x} x+4 e^{5+x} x^2+4 \int \frac {e^{5+x} x^2}{(x-\log (x)) \log ^2(x-\log (x))} \, dx-4 \int \frac {e^{5+x} x^2}{\log (x-\log (x))} \, dx-12 \int \frac {e^{5+x} x}{\log (x-\log (x))} \, dx+16 \int \frac {e^{5+x}}{\log (x-\log (x))} \, dx+20 \int \frac {e^{5+x}}{x (x-\log (x)) \log ^2(x-\log (x))} \, dx-24 \int \frac {e^{5+x}}{(x-\log (x)) \log ^2(x-\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.70, size = 31, normalized size = 1.07 \begin {gather*} \frac {4 e^{5+x} \left (-5+x+x^2\right ) (-1+\log (x-\log (x)))}{\log (x-\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 33, normalized size = 1.14 \begin {gather*} -{\left (x^{2} + x - 5\right )} e^{\left (x + \log \left (-\frac {4 \, {\left (\log \left (x - \log \relax (x)\right ) - 1\right )}}{\log \left (x - \log \relax (x)\right )}\right ) + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 75, normalized size = 2.59 \begin {gather*} \frac {4 \, {\left (x^{2} e^{\left (x + 5\right )} \log \left (x - \log \relax (x)\right ) - x^{2} e^{\left (x + 5\right )} + x e^{\left (x + 5\right )} \log \left (x - \log \relax (x)\right ) - x e^{\left (x + 5\right )} - 5 \, e^{\left (x + 5\right )} \log \left (x - \log \relax (x)\right ) + 5 \, e^{\left (x + 5\right )}\right )}}{\log \left (x - \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.36, size = 245, normalized size = 8.45
method | result | size |
risch | \(\frac {4 \left (\ln \left (x -\ln \relax (x )\right ) x^{2}-x^{2}+x \ln \left (x -\ln \relax (x )\right )-x -5 \ln \left (x -\ln \relax (x )\right )+5\right ) {\mathrm e}^{5+\frac {i \pi \mathrm {csgn}\left (\frac {i \left (\ln \left (x -\ln \relax (x )\right )-1\right )}{\ln \left (x -\ln \relax (x )\right )}\right )^{3}}{2}+\frac {i \pi \mathrm {csgn}\left (\frac {i \left (\ln \left (x -\ln \relax (x )\right )-1\right )}{\ln \left (x -\ln \relax (x )\right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \left (x -\ln \relax (x )\right )}\right )}{2}+\frac {i \pi \mathrm {csgn}\left (\frac {i \left (\ln \left (x -\ln \relax (x )\right )-1\right )}{\ln \left (x -\ln \relax (x )\right )}\right )^{2} \mathrm {csgn}\left (i \left (\ln \left (x -\ln \relax (x )\right )-1\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (\ln \left (x -\ln \relax (x )\right )-1\right )}{\ln \left (x -\ln \relax (x )\right )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \left (x -\ln \relax (x )\right )}\right ) \mathrm {csgn}\left (i \left (\ln \left (x -\ln \relax (x )\right )-1\right )\right )}{2}-i \pi \mathrm {csgn}\left (\frac {i \left (\ln \left (x -\ln \relax (x )\right )-1\right )}{\ln \left (x -\ln \relax (x )\right )}\right )^{2}+x}}{\ln \left (x -\ln \relax (x )\right )}\) | \(245\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 56, normalized size = 1.93 \begin {gather*} \frac {4 \, {\left ({\left (x^{2} e^{5} + x e^{5} - 5 \, e^{5}\right )} e^{x} \log \left (x - \log \relax (x)\right ) - {\left (x^{2} e^{5} + x e^{5} - 5 \, e^{5}\right )} e^{x}\right )}}{\log \left (x - \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{x+\ln \left (-\frac {4\,\ln \left (x-\ln \relax (x)\right )-4}{\ln \left (x-\ln \relax (x)\right )}\right )+5}\,\left (\ln \left (x-\ln \relax (x)\right )\,\left (\ln \relax (x)\,\left (x^3+3\,x^2-4\,x\right )+4\,x^2-3\,x^3-x^4\right )-6\,x-{\ln \left (x-\ln \relax (x)\right )}^2\,\left (\ln \relax (x)\,\left (x^3+3\,x^2-4\,x\right )+4\,x^2-3\,x^3-x^4\right )+x^3+5\right )}{\ln \left (x-\ln \relax (x)\right )\,\left (x\,\ln \relax (x)-x^2\right )-{\ln \left (x-\ln \relax (x)\right )}^2\,\left (x\,\ln \relax (x)-x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.57, size = 51, normalized size = 1.76 \begin {gather*} \frac {\left (4 x^{2} \log {\left (x - \log {\relax (x )} \right )} - 4 x^{2} + 4 x \log {\left (x - \log {\relax (x )} \right )} - 4 x - 20 \log {\left (x - \log {\relax (x )} \right )} + 20\right ) e^{x + 5}}{\log {\left (x - \log {\relax (x )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________