Optimal. Leaf size=23 \[ 2-4 e^{\frac {8 e^{2 x}}{2+4 x}}-x \]
________________________________________________________________________________________
Rubi [F] time = 0.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1-4 x-64 e^{2 x+\frac {8 e^{2 x}}{2+4 x}} x-4 x^2}{1+4 x+4 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1-4 x-64 e^{2 x+\frac {8 e^{2 x}}{2+4 x}} x-4 x^2}{(1+2 x)^2} \, dx\\ &=\int \left (-1-\frac {64 e^{2 x+\frac {4 e^{2 x}}{1+2 x}} x}{(1+2 x)^2}\right ) \, dx\\ &=-x-64 \int \frac {e^{2 x+\frac {4 e^{2 x}}{1+2 x}} x}{(1+2 x)^2} \, dx\\ &=-x-64 \int \left (-\frac {e^{2 x+\frac {4 e^{2 x}}{1+2 x}}}{2 (1+2 x)^2}+\frac {e^{2 x+\frac {4 e^{2 x}}{1+2 x}}}{2 (1+2 x)}\right ) \, dx\\ &=-x+32 \int \frac {e^{2 x+\frac {4 e^{2 x}}{1+2 x}}}{(1+2 x)^2} \, dx-32 \int \frac {e^{2 x+\frac {4 e^{2 x}}{1+2 x}}}{1+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 22, normalized size = 0.96 \begin {gather*} -4 e^{\frac {4 e^{2 x}}{1+2 x}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.85, size = 61, normalized size = 2.65 \begin {gather*} -{\left (x e^{\left (2 \, x + 2 \, \log \relax (2)\right )} + 4 \, e^{\left (\frac {4 \, x^{2} + 2 \, {\left (2 \, x + 1\right )} \log \relax (2) + 2 \, x + e^{\left (2 \, x + 2 \, \log \relax (2)\right )}}{2 \, x + 1}\right )}\right )} e^{\left (-2 \, x - 2 \, \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 38, normalized size = 1.65 \begin {gather*} -{\left (x e^{\left (2 \, x\right )} + 4 \, e^{\left (\frac {2 \, {\left (2 \, x^{2} + x + 2 \, e^{\left (2 \, x\right )}\right )}}{2 \, x + 1}\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 21, normalized size = 0.91
method | result | size |
risch | \(-4 \,{\mathrm e}^{\frac {4 \,{\mathrm e}^{2 x}}{2 x +1}}-x\) | \(21\) |
norman | \(\frac {-x -2 x^{2}-4 \,{\mathrm e}^{\frac {8 \,{\mathrm e}^{2 x}}{4 x +2}}-8 x \,{\mathrm e}^{\frac {8 \,{\mathrm e}^{2 x}}{4 x +2}}}{2 x +1}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 0.87 \begin {gather*} -x - 4 \, e^{\left (\frac {4 \, e^{\left (2 \, x\right )}}{2 \, x + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.35, size = 20, normalized size = 0.87 \begin {gather*} -x-4\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{2\,x}}{2\,x+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 17, normalized size = 0.74 \begin {gather*} - x - 4 e^{\frac {8 e^{2 x}}{4 x + 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________