Optimal. Leaf size=25 \[ \frac {x}{-5-3^{3 x}+\frac {-5+x}{x (25+x)}} \]
________________________________________________________________________________________
Rubi [F] time = 3.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-250 x-3115 x^2-248 x^3-5 x^4+3^{3 x} \left (-625 x^2-50 x^3-x^4+\left (1875 x^3+150 x^4+3 x^5\right ) \log (3)\right )}{25+1240 x+15426 x^2+1240 x^3+25 x^4+3^{6 x} \left (625 x^2+50 x^3+x^4\right )+3^{3 x} \left (250 x+6210 x^2+498 x^3+10 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-250-5 \left (623+125\ 27^x\right ) x+3^{1+3 x} x^4 \log (3)+x^3 \left (-5-27^x+50\ 3^{1+3 x} \log (3)\right )+x^2 \left (-248-50\ 27^x+625\ 3^{1+3 x} \log (3)\right )\right )}{\left (5+\left (124+25\ 27^x\right ) x+\left (5+27^x\right ) x^2\right )^2} \, dx\\ &=\int \left (\frac {x \left (-125+x^2 (1-9315 \log (3))-747 x^3 \log (3)-15 x^4 \log (3)-5 x (2+75 \log (3))\right )}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2}+\frac {x (25+x) (-1+x \log (27))}{5+124 x+25\ 27^x x+5 x^2+27^x x^2}\right ) \, dx\\ &=\int \frac {x \left (-125+x^2 (1-9315 \log (3))-747 x^3 \log (3)-15 x^4 \log (3)-5 x (2+75 \log (3))\right )}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2} \, dx+\int \frac {x (25+x) (-1+x \log (27))}{5+124 x+25\ 27^x x+5 x^2+27^x x^2} \, dx\\ &=\int \left (-\frac {125 x}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2}-\frac {747 x^4 \log (3)}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2}-\frac {15 x^5 \log (3)}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2}-\frac {5 x^2 (2+75 \log (3))}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2}-\frac {x^3 (-1+9315 \log (3))}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2}\right ) \, dx+\int \left (-\frac {25 x}{5+124 x+25\ 27^x x+5 x^2+27^x x^2}+\frac {x^3 \log (27)}{5+124 x+25\ 27^x x+5 x^2+27^x x^2}+\frac {x^2 (-1+25 \log (27))}{5+124 x+25\ 27^x x+5 x^2+27^x x^2}\right ) \, dx\\ &=-\left (25 \int \frac {x}{5+124 x+25\ 27^x x+5 x^2+27^x x^2} \, dx\right )-125 \int \frac {x}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2} \, dx+(1-9315 \log (3)) \int \frac {x^3}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2} \, dx-(15 \log (3)) \int \frac {x^5}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2} \, dx-(747 \log (3)) \int \frac {x^4}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2} \, dx-(5 (2+75 \log (3))) \int \frac {x^2}{\left (5+124 x+25\ 27^x x+5 x^2+27^x x^2\right )^2} \, dx+\log (27) \int \frac {x^3}{5+124 x+25\ 27^x x+5 x^2+27^x x^2} \, dx+(-1+25 \log (27)) \int \frac {x^2}{5+124 x+25\ 27^x x+5 x^2+27^x x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.18, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-250 x-3115 x^2-248 x^3-5 x^4+3^{3 x} \left (-625 x^2-50 x^3-x^4+\left (1875 x^3+150 x^4+3 x^5\right ) \log (3)\right )}{25+1240 x+15426 x^2+1240 x^3+25 x^4+3^{6 x} \left (625 x^2+50 x^3+x^4\right )+3^{3 x} \left (250 x+6210 x^2+498 x^3+10 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 36, normalized size = 1.44 \begin {gather*} -\frac {x^{3} + 25 \, x^{2}}{{\left (x^{2} + 25 \, x\right )} 3^{3 \, x} + 5 \, x^{2} + 124 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {5 \, x^{4} + 248 \, x^{3} + {\left (x^{4} + 50 \, x^{3} + 625 \, x^{2} - 3 \, {\left (x^{5} + 50 \, x^{4} + 625 \, x^{3}\right )} \log \relax (3)\right )} 3^{3 \, x} + 3115 \, x^{2} + 250 \, x}{25 \, x^{4} + 1240 \, x^{3} + {\left (x^{4} + 50 \, x^{3} + 625 \, x^{2}\right )} 3^{6 \, x} + 2 \, {\left (5 \, x^{4} + 249 \, x^{3} + 3105 \, x^{2} + 125 \, x\right )} 3^{3 \, x} + 15426 \, x^{2} + 1240 \, x + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.58, size = 34, normalized size = 1.36
method | result | size |
risch | \(-\frac {x^{2} \left (x +25\right )}{27^{x} x^{2}+25 \,27^{x} x +5 x^{2}+124 x +5}\) | \(34\) |
norman | \(\frac {-x^{3}-25 x^{2}}{{\mathrm e}^{3 x \ln \relax (3)} x^{2}+25 \,{\mathrm e}^{3 x \ln \relax (3)} x +5 x^{2}+124 x +5}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 36, normalized size = 1.44 \begin {gather*} -\frac {x^{3} + 25 \, x^{2}}{{\left (x^{2} + 25 \, x\right )} 3^{3 \, x} + 5 \, x^{2} + 124 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {250\,x+{\mathrm {e}}^{3\,x\,\ln \relax (3)}\,\left (625\,x^2-\ln \relax (3)\,\left (3\,x^5+150\,x^4+1875\,x^3\right )+50\,x^3+x^4\right )+3115\,x^2+248\,x^3+5\,x^4}{1240\,x+{\mathrm {e}}^{6\,x\,\ln \relax (3)}\,\left (x^4+50\,x^3+625\,x^2\right )+15426\,x^2+1240\,x^3+25\,x^4+{\mathrm {e}}^{3\,x\,\ln \relax (3)}\,\left (10\,x^4+498\,x^3+6210\,x^2+250\,x\right )+25} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 34, normalized size = 1.36 \begin {gather*} \frac {- x^{3} - 25 x^{2}}{5 x^{2} + 124 x + \left (x^{2} + 25 x\right ) e^{3 x \log {\relax (3 )}} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________