Optimal. Leaf size=30 \[ 2 e^{\left (-x+e^{\frac {1}{4} \left (5+e^{3+e^x}\right )} x+x^2\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 6.34, antiderivative size = 32, normalized size of antiderivative = 1.07, number of steps used = 2, number of rules used = 2, integrand size = 150, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.013, Rules used = {6688, 6706} \begin {gather*} 2 e^{\left (-x-e^{\frac {1}{4} \left (e^{e^x+3}+5\right )}+1\right )^2 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{x^2 \left (-1+e^{\frac {1}{4} \left (5+e^{3+e^x}\right )}+x\right )^2} \left (1-e^{\frac {1}{4} \left (5+e^{3+e^x}\right )}-x\right ) x \left (4-4 e^{\frac {1}{4} \left (5+e^{3+e^x}\right )}-8 x-e^{\frac {17}{4}+\frac {e^{3+e^x}}{4}+e^x+x} x\right ) \, dx\\ &=2 e^{\left (1-e^{\frac {1}{4} \left (5+e^{3+e^x}\right )}-x\right )^2 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 28, normalized size = 0.93 \begin {gather*} 2 e^{x^2 \left (-1+e^{\frac {1}{4} \left (5+e^{3+e^x}\right )}+x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 66, normalized size = 2.20 \begin {gather*} 2 \, e^{\left (x^{4} - 2 \, x^{3} + x^{2} e^{\left (\frac {1}{2} \, {\left (e^{\left (x + e^{x} + 3\right )} + 5 \, e^{x}\right )} e^{\left (-x\right )}\right )} + x^{2} + 2 \, {\left (x^{3} - x^{2}\right )} e^{\left (\frac {1}{4} \, {\left (e^{\left (x + e^{x} + 3\right )} + 5 \, e^{x}\right )} e^{\left (-x\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (8 \, x^{3} - 12 \, x^{2} + {\left (x^{2} e^{\left (x + e^{x} + 3\right )} + 4 \, x\right )} e^{\left (\frac {1}{2} \, e^{\left (e^{x} + 3\right )} + \frac {5}{2}\right )} + {\left (12 \, x^{2} + {\left (x^{3} - x^{2}\right )} e^{\left (x + e^{x} + 3\right )} - 8 \, x\right )} e^{\left (\frac {1}{4} \, e^{\left (e^{x} + 3\right )} + \frac {5}{4}\right )} + 4 \, x\right )} e^{\left (x^{4} - 2 \, x^{3} + x^{2} e^{\left (\frac {1}{2} \, e^{\left (e^{x} + 3\right )} + \frac {5}{2}\right )} + x^{2} + 2 \, {\left (x^{3} - x^{2}\right )} e^{\left (\frac {1}{4} \, e^{\left (e^{x} + 3\right )} + \frac {5}{4}\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.15, size = 51, normalized size = 1.70
method | result | size |
risch | \(2 \,{\mathrm e}^{x^{2} \left (2 x \,{\mathrm e}^{\frac {{\mathrm e}^{3+{\mathrm e}^{x}}}{4}+\frac {5}{4}}+x^{2}-2 \,{\mathrm e}^{\frac {{\mathrm e}^{3+{\mathrm e}^{x}}}{4}+\frac {5}{4}}+{\mathrm e}^{\frac {{\mathrm e}^{3+{\mathrm e}^{x}}}{2}+\frac {5}{2}}-2 x +1\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (8 \, x^{3} - 12 \, x^{2} + {\left (x^{2} e^{\left (x + e^{x} + 3\right )} + 4 \, x\right )} e^{\left (\frac {1}{2} \, e^{\left (e^{x} + 3\right )} + \frac {5}{2}\right )} + {\left (12 \, x^{2} + {\left (x^{3} - x^{2}\right )} e^{\left (x + e^{x} + 3\right )} - 8 \, x\right )} e^{\left (\frac {1}{4} \, e^{\left (e^{x} + 3\right )} + \frac {5}{4}\right )} + 4 \, x\right )} e^{\left (x^{4} - 2 \, x^{3} + x^{2} e^{\left (\frac {1}{2} \, e^{\left (e^{x} + 3\right )} + \frac {5}{2}\right )} + x^{2} + 2 \, {\left (x^{3} - x^{2}\right )} e^{\left (\frac {1}{4} \, e^{\left (e^{x} + 3\right )} + \frac {5}{4}\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.00, size = 63, normalized size = 2.10 \begin {gather*} 2\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{5/2}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^3}{2}}}\,{\mathrm {e}}^{-2\,x^2\,{\mathrm {e}}^{5/4}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^3}{4}}}\,{\mathrm {e}}^{2\,x^3\,{\mathrm {e}}^{5/4}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^3}{4}}}\,{\mathrm {e}}^{-2\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 6.64, size = 54, normalized size = 1.80 \begin {gather*} 2 e^{x^{4} - 2 x^{3} + x^{2} e^{\frac {e^{e^{x} + 3}}{2} + \frac {5}{2}} + x^{2} + \left (2 x^{3} - 2 x^{2}\right ) e^{\frac {e^{e^{x} + 3}}{4} + \frac {5}{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________