Optimal. Leaf size=24 \[ e^{-e^{4 x (x+\log (-x+\log (3)))}-x} x \]
________________________________________________________________________________________
Rubi [F] time = 7.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} \left (-x+x^2+(1-x) \log (3)+e^{4 x^2+4 x \log (-x+\log (3))} \left (4 x^2+8 x^3-8 x^2 \log (3)+\left (4 x^2-4 x \log (3)\right ) \log (-x+\log (3))\right )\right )}{-x+\log (3)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x}-e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} x+4 \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x (-x+\log (3))^{-1+4 x} \left (2 x^2+x (1-\log (9))+x \log (-x+\log (3))-\log (3) \log (-x+\log (3))\right )\right ) \, dx\\ &=4 \int \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x (-x+\log (3))^{-1+4 x} \left (2 x^2+x (1-\log (9))+x \log (-x+\log (3))-\log (3) \log (-x+\log (3))\right ) \, dx+\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} \, dx-\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} x \, dx\\ &=4 \int \left (\exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x^2 (-x+\log (3))^{-1+4 x} (1+2 x-\log (9))-\exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x (-x+\log (3))^{4 x} \log (-x+\log (3))\right ) \, dx+\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} \, dx-\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} x \, dx\\ &=4 \int \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x^2 (-x+\log (3))^{-1+4 x} (1+2 x-\log (9)) \, dx-4 \int \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x (-x+\log (3))^{4 x} \log (-x+\log (3)) \, dx+\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} \, dx-\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} x \, dx\\ &=4 \int \left (2 \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x^3 (-x+\log (3))^{-1+4 x}-\exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x^2 (-x+\log (3))^{-1+4 x} (-1+\log (9))\right ) \, dx-4 \int \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x (-x+\log (3))^{4 x} \log (-x+\log (3)) \, dx+\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} \, dx-\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} x \, dx\\ &=-\left (4 \int \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x (-x+\log (3))^{4 x} \log (-x+\log (3)) \, dx\right )+8 \int \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x^3 (-x+\log (3))^{-1+4 x} \, dx+(4 (1-\log (9))) \int \exp \left (-e^{4 x^2+4 x \log (-x+\log (3))}-x+4 x^2\right ) x^2 (-x+\log (3))^{-1+4 x} \, dx+\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} \, dx-\int e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 3.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{-e^{4 x^2+4 x \log (-x+\log (3))}-x} \left (-x+x^2+(1-x) \log (3)+e^{4 x^2+4 x \log (-x+\log (3))} \left (4 x^2+8 x^3-8 x^2 \log (3)+\left (4 x^2-4 x \log (3)\right ) \log (-x+\log (3))\right )\right )}{-x+\log (3)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 26, normalized size = 1.08 \begin {gather*} x e^{\left (-x - e^{\left (4 \, x^{2} + 4 \, x \log \left (-x + \log \relax (3)\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{2} + 4 \, {\left (2 \, x^{3} - 2 \, x^{2} \log \relax (3) + x^{2} + {\left (x^{2} - x \log \relax (3)\right )} \log \left (-x + \log \relax (3)\right )\right )} e^{\left (4 \, x^{2} + 4 \, x \log \left (-x + \log \relax (3)\right )\right )} - {\left (x - 1\right )} \log \relax (3) - x\right )} e^{\left (-x - e^{\left (4 \, x^{2} + 4 \, x \log \left (-x + \log \relax (3)\right )\right )}\right )}}{x - \log \relax (3)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 26, normalized size = 1.08
method | result | size |
risch | \(x \,{\mathrm e}^{-\left (\ln \relax (3)-x \right )^{4 x} {\mathrm e}^{4 x^{2}}-x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 26, normalized size = 1.08 \begin {gather*} x e^{\left (-x - e^{\left (4 \, x^{2} + 4 \, x \log \left (-x + \log \relax (3)\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.88, size = 25, normalized size = 1.04 \begin {gather*} x\,{\mathrm {e}}^{-{\mathrm {e}}^{4\,x^2}\,{\left (\ln \relax (3)-x\right )}^{4\,x}}\,{\mathrm {e}}^{-x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________