Optimal. Leaf size=27 \[ e^{-x+\left (\sqrt [676]{e}+\log \left (-4+\frac {4-x}{x}+x\right )\right )^2} \]
________________________________________________________________________________________
Rubi [B] time = 2.47, antiderivative size = 146, normalized size of antiderivative = 5.41, number of steps used = 3, number of rules used = 3, integrand size = 109, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {1594, 2274, 2288} \begin {gather*} \frac {\left (\frac {x^2-5 x+4}{x}\right )^{2 \sqrt [676]{e}} e^{\log ^2\left (\frac {x^2-5 x+4}{x}\right )-x+\sqrt [338]{e}} \left (x^3-5 x^2+2 \left (4-x^2\right ) \log \left (\frac {x^2-5 x+4}{x}\right )+4 x\right )}{x \left (x^2-5 x+4\right ) \left (\frac {2 x \left (\frac {x^2-5 x+4}{x^2}+\frac {5-2 x}{x}\right ) \log \left (\frac {x^2-5 x+4}{x}\right )}{x^2-5 x+4}+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1594
Rule 2274
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\sqrt [338]{e}-x+2 \sqrt [676]{e} \log \left (\frac {4-5 x+x^2}{x}\right )+\log ^2\left (\frac {4-5 x+x^2}{x}\right )\right ) \left (-4 x+5 x^2-x^3+\sqrt [676]{e} \left (-8+2 x^2\right )+\left (-8+2 x^2\right ) \log \left (\frac {4-5 x+x^2}{x}\right )\right )}{x \left (4-5 x+x^2\right )} \, dx\\ &=\int \frac {e^{\sqrt [338]{e}-x+\log ^2\left (\frac {4-5 x+x^2}{x}\right )} \left (\frac {4-5 x+x^2}{x}\right )^{2 \sqrt [676]{e}} \left (-4 x+5 x^2-x^3+\sqrt [676]{e} \left (-8+2 x^2\right )+\left (-8+2 x^2\right ) \log \left (\frac {4-5 x+x^2}{x}\right )\right )}{x \left (4-5 x+x^2\right )} \, dx\\ &=\frac {e^{\sqrt [338]{e}-x+\log ^2\left (\frac {4-5 x+x^2}{x}\right )} \left (\frac {4-5 x+x^2}{x}\right )^{2 \sqrt [676]{e}} \left (4 x-5 x^2+x^3+2 \left (4-x^2\right ) \log \left (\frac {4-5 x+x^2}{x}\right )\right )}{x \left (4-5 x+x^2\right ) \left (1+\frac {2 x \left (\frac {5-2 x}{x}+\frac {4-5 x+x^2}{x^2}\right ) \log \left (\frac {4-5 x+x^2}{x}\right )}{4-5 x+x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 39, normalized size = 1.44 \begin {gather*} e^{\sqrt [338]{e}-x+\log ^2\left (-5+\frac {4}{x}+x\right )} \left (-5+\frac {4}{x}+x\right )^{2 \sqrt [676]{e}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 39, normalized size = 1.44 \begin {gather*} e^{\left (2 \, e^{\frac {1}{676}} \log \left (\frac {x^{2} - 5 \, x + 4}{x}\right ) + \log \left (\frac {x^{2} - 5 \, x + 4}{x}\right )^{2} - x + e^{\frac {1}{338}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.55, size = 31, normalized size = 1.15 \begin {gather*} e^{\left (2 \, e^{\frac {1}{676}} \log \left (x + \frac {4}{x} - 5\right ) + \log \left (x + \frac {4}{x} - 5\right )^{2} - x + e^{\frac {1}{338}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 41, normalized size = 1.52
method | result | size |
risch | \(\left (\frac {x^{2}-5 x +4}{x}\right )^{2 \,{\mathrm e}^{\frac {1}{676}}} {\mathrm e}^{\ln \left (\frac {x^{2}-5 x +4}{x}\right )^{2}+{\mathrm e}^{\frac {1}{338}}-x}\) | \(41\) |
norman | \({\mathrm e}^{\ln \left (\frac {x^{2}-5 x +4}{x}\right )^{2}+2 \,{\mathrm e}^{\frac {1}{676}} \ln \left (\frac {x^{2}-5 x +4}{x}\right )+{\mathrm e}^{\frac {1}{338}}-x}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.68, size = 71, normalized size = 2.63 \begin {gather*} e^{\left (2 \, e^{\frac {1}{676}} \log \left (x - 1\right ) + \log \left (x - 1\right )^{2} + 2 \, e^{\frac {1}{676}} \log \left (x - 4\right ) + 2 \, \log \left (x - 1\right ) \log \left (x - 4\right ) + \log \left (x - 4\right )^{2} - 2 \, e^{\frac {1}{676}} \log \relax (x) - 2 \, \log \left (x - 1\right ) \log \relax (x) - 2 \, \log \left (x - 4\right ) \log \relax (x) + \log \relax (x)^{2} - x + e^{\frac {1}{338}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.87, size = 37, normalized size = 1.37 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\ln \left (\frac {x^2-5\,x+4}{x}\right )}^2}\,{\mathrm {e}}^{{\mathrm {e}}^{1/338}}\,{\left (x+\frac {4}{x}-5\right )}^{2\,{\mathrm {e}}^{1/676}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________