Optimal. Leaf size=27 \[ \frac {\log (x)}{\log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 11.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-2 x^2+e^2 \left (250 x-250 x^2+2 x^3-2 x^4+e \left (50 x-50 x^2\right )\right )\right ) \log (x)+\left (e^2 \left (125-250 x+126 x^2-2 x^3+x^4+e \left (25-50 x+25 x^2\right )\right )+\left (125+25 e+x^2\right ) \log \left (\frac {1}{25} \left (125+25 e+x^2\right )\right )\right ) \log \left (e^2 \left (1-2 x+x^2\right )+\log \left (\frac {1}{25} \left (125+25 e+x^2\right )\right )\right )}{\left (e^2 \left (125 x-250 x^2+126 x^3-2 x^4+x^5+e \left (25 x-50 x^2+25 x^3\right )\right )+\left (125 x+25 e x+x^3\right ) \log \left (\frac {1}{25} \left (125+25 e+x^2\right )\right )\right ) \log ^2\left (e^2 \left (1-2 x+x^2\right )+\log \left (\frac {1}{25} \left (125+25 e+x^2\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {\left (-2 x^2-2 e^2 (-1+x) x \left (125+25 e+x^2\right )\right ) \log (x)}{\left (125+25 e+x^2\right ) \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}+\log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}{x \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx\\ &=\int \left (\frac {2 \left (25 e^2 (5+e)-\left (1+125 e^2+25 e^3\right ) x+e^2 x^2-e^2 x^3\right ) \log (x)}{\left (125+25 e+x^2\right ) \left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}+\frac {1}{x \log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}\right ) \, dx\\ &=2 \int \frac {\left (25 e^2 (5+e)-\left (1+125 e^2+25 e^3\right ) x+e^2 x^2-e^2 x^3\right ) \log (x)}{\left (125+25 e+x^2\right ) \left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx+\int \frac {1}{x \log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx\\ &=2 \int \left (\frac {e^2 \log (x)}{\left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}-\frac {e^2 x \log (x)}{\left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}-\frac {x \log (x)}{\left (125+25 e+x^2\right ) \left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}\right ) \, dx+\int \frac {1}{x \log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx\\ &=-\left (2 \int \frac {x \log (x)}{\left (125+25 e+x^2\right ) \left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx\right )+\left (2 e^2\right ) \int \frac {\log (x)}{\left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx-\left (2 e^2\right ) \int \frac {x \log (x)}{\left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx+\int \frac {1}{x \log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx\\ &=-\left (2 \int \left (-\frac {\log (x)}{2 \left (5 i \sqrt {5+e}-x\right ) \left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}+\frac {\log (x)}{2 \left (5 i \sqrt {5+e}+x\right ) \left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )}\right ) \, dx\right )+\left (2 e^2\right ) \int \frac {\log (x)}{\left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx-\left (2 e^2\right ) \int \frac {x \log (x)}{\left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx+\int \frac {1}{x \log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx\\ &=\left (2 e^2\right ) \int \frac {\log (x)}{\left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx-\left (2 e^2\right ) \int \frac {x \log (x)}{\left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx+\int \frac {\log (x)}{\left (5 i \sqrt {5+e}-x\right ) \left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx-\int \frac {\log (x)}{\left (5 i \sqrt {5+e}+x\right ) \left (e^2-2 e^2 x+e^2 x^2+\log \left (5+e+\frac {x^2}{25}\right )\right ) \log ^2\left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx+\int \frac {1}{x \log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 27, normalized size = 1.00 \begin {gather*} \frac {\log (x)}{\log \left (e^2 (-1+x)^2+\log \left (5+e+\frac {x^2}{25}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.24, size = 28, normalized size = 1.04 \begin {gather*} \frac {\log \relax (x)}{\log \left ({\left (x^{2} - 2 \, x + 1\right )} e^{2} + \log \left (\frac {1}{25} \, x^{2} + e + 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.37, size = 1134, normalized size = 42.00 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 29, normalized size = 1.07
method | result | size |
risch | \(\frac {\ln \relax (x )}{\ln \left (\ln \left ({\mathrm e}+\frac {x^{2}}{25}+5\right )+\left (x^{2}-2 x +1\right ) {\mathrm e}^{2}\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 34, normalized size = 1.26 \begin {gather*} \frac {\log \relax (x)}{\log \left (x^{2} e^{2} - 2 \, x e^{2} + e^{2} - 2 \, \log \relax (5) + \log \left (x^{2} + 25 \, e + 125\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.68, size = 28, normalized size = 1.04 \begin {gather*} \frac {\ln \relax (x)}{\ln \left (\ln \left (\frac {x^2}{25}+\mathrm {e}+5\right )+{\mathrm {e}}^2\,\left (x^2-2\,x+1\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 7.84, size = 27, normalized size = 1.00 \begin {gather*} \frac {\log {\relax (x )}}{\log {\left (\left (x^{2} - 2 x + 1\right ) e^{2} + \log {\left (\frac {x^{2}}{25} + e + 5 \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________