Optimal. Leaf size=30 \[ e^{2 x}-\log \left (\log \left (\frac {4 \left (4+e^x\right )}{3+x}\right )+\log \left (\frac {x}{\log (3)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-12+e^x \left (-3-3 x-x^2\right )+\left (e^{3 x} \left (6 x+2 x^2\right )+e^{2 x} \left (24 x+8 x^2\right )\right ) \log \left (\frac {16+4 e^x}{3+x}\right )+\left (e^{3 x} \left (6 x+2 x^2\right )+e^{2 x} \left (24 x+8 x^2\right )\right ) \log \left (\frac {x}{\log (3)}\right )}{\left (12 x+4 x^2+e^x \left (3 x+x^2\right )\right ) \log \left (\frac {16+4 e^x}{3+x}\right )+\left (12 x+4 x^2+e^x \left (3 x+x^2\right )\right ) \log \left (\frac {x}{\log (3)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12-3 e^x-3 e^x x-e^x x^2+2 e^{2 x} \left (4+e^x\right ) x (3+x) \log \left (\frac {4 \left (4+e^x\right )}{3+x}\right )+2 e^{2 x} \left (4+e^x\right ) x (3+x) \log \left (\frac {x}{\log (3)}\right )}{\left (4+e^x\right ) x (3+x) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )} \, dx\\ &=\int \left (2 e^{2 x}+\frac {4}{\left (4+e^x\right ) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )}+\frac {-3-3 x-x^2}{x (3+x) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )}\right ) \, dx\\ &=2 \int e^{2 x} \, dx+4 \int \frac {1}{\left (4+e^x\right ) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )} \, dx+\int \frac {-3-3 x-x^2}{x (3+x) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )} \, dx\\ &=e^{2 x}+4 \int \frac {1}{\left (4+e^x\right ) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )} \, dx+\int \left (\frac {1}{-\log \left (\frac {4+e^x}{3+x}\right )-\log \left (\frac {4 x}{\log (3)}\right )}-\frac {1}{x \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )}+\frac {1}{(3+x) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )}\right ) \, dx\\ &=e^{2 x}+4 \int \frac {1}{\left (4+e^x\right ) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )} \, dx+\int \frac {1}{-\log \left (\frac {4+e^x}{3+x}\right )-\log \left (\frac {4 x}{\log (3)}\right )} \, dx-\int \frac {1}{x \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )} \, dx+\int \frac {1}{(3+x) \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 30, normalized size = 1.00 \begin {gather*} e^{2 x}-\log \left (\log \left (\frac {4+e^x}{3+x}\right )+\log \left (\frac {4 x}{\log (3)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 28, normalized size = 0.93 \begin {gather*} e^{\left (2 \, x\right )} - \log \left (\log \left (\frac {4 \, {\left (e^{x} + 4\right )}}{x + 3}\right ) + \log \left (\frac {x}{\log \relax (3)}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 31, normalized size = 1.03 \begin {gather*} e^{\left (2 \, x\right )} - \log \left (2 \, \log \relax (2) - \log \left (x + 3\right ) + \log \relax (x) + \log \left (e^{x} + 4\right ) - \log \left (\log \relax (3)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 143, normalized size = 4.77
method | result | size |
risch | \({\mathrm e}^{2 x}-\ln \left (\ln \left ({\mathrm e}^{x}+4\right )+\frac {i \left (\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+4\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+4\right )}{3+x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+4\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+4\right )}{3+x}\right ) \mathrm {csgn}\left (\frac {i}{3+x}\right )-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+4\right )}{3+x}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}+4\right )}{3+x}\right )^{2} \mathrm {csgn}\left (\frac {i}{3+x}\right )-4 i \ln \relax (2)-2 i \ln \left (\frac {x}{\ln \relax (3)}\right )+2 i \ln \left (3+x \right )\right )}{2}\right )\) | \(143\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 31, normalized size = 1.03 \begin {gather*} e^{\left (2 \, x\right )} - \log \left (2 \, \log \relax (2) - \log \left (x + 3\right ) + \log \relax (x) + \log \left (e^{x} + 4\right ) - \log \left (\log \relax (3)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.28, size = 28, normalized size = 0.93 \begin {gather*} {\mathrm {e}}^{2\,x}-\ln \left (\ln \left (\frac {4\,{\mathrm {e}}^x+16}{\ln \relax (3)\,\left (x+3\right )}\right )+\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.89, size = 24, normalized size = 0.80 \begin {gather*} e^{2 x} - \log {\left (\log {\left (\frac {x}{\log {\relax (3 )}} \right )} + \log {\left (\frac {4 e^{x} + 16}{x + 3} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________