Optimal. Leaf size=27 \[ 1+\frac {1}{4} (-1+x)+\log \left (\frac {-4+x+\log (2)-\log (4-x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.70, antiderivative size = 24, normalized size of antiderivative = 0.89, number of steps used = 7, number of rules used = 5, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6741, 12, 6742, 43, 6684} \begin {gather*} \frac {x}{4}-\log (x)+\log \left (-x+\log \left (2-\frac {x}{2}\right )+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 43
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64-28 x+8 x^2-x^3+\left (-16+8 x-x^2\right ) \log (2)+\left (16-8 x+x^2\right ) \log (4-x)}{4 (4-x) x \left (x-4 \left (1-\frac {\log (2)}{4}\right )-\log (4-x)\right )} \, dx\\ &=\frac {1}{4} \int \frac {64-28 x+8 x^2-x^3+\left (-16+8 x-x^2\right ) \log (2)+\left (16-8 x+x^2\right ) \log (4-x)}{(4-x) x \left (x-4 \left (1-\frac {\log (2)}{4}\right )-\log (4-x)\right )} \, dx\\ &=\frac {1}{4} \int \left (\frac {-4+x}{x}+\frac {4 (-5+x)}{(-4+x) \left (-4+x-\log \left (2-\frac {x}{2}\right )\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-4+x}{x} \, dx+\int \frac {-5+x}{(-4+x) \left (-4+x-\log \left (2-\frac {x}{2}\right )\right )} \, dx\\ &=\log \left (4-x+\log \left (2-\frac {x}{2}\right )\right )+\frac {1}{4} \int \left (1-\frac {4}{x}\right ) \, dx\\ &=\frac {x}{4}-\log (x)+\log \left (4-x+\log \left (2-\frac {x}{2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.07, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {64-28 x+8 x^2-x^3+\left (-16+8 x-x^2\right ) \log (2)+\left (16-8 x+x^2\right ) \log (4-x)}{-64 x+32 x^2-4 x^3+\left (16 x-4 x^2\right ) \log (2)+\left (-16 x+4 x^2\right ) \log (4-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 24, normalized size = 0.89 \begin {gather*} \frac {1}{4} \, x - \log \relax (x) + \log \left (-x - \log \relax (2) + \log \left (-x + 4\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 24, normalized size = 0.89 \begin {gather*} \frac {1}{4} \, x - \log \relax (x) + \log \left (-x - \log \relax (2) + \log \left (-x + 4\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 23, normalized size = 0.85
method | result | size |
norman | \(\frac {x}{4}-\ln \relax (x )+\ln \left (x -\ln \left (-x +4\right )-4+\ln \relax (2)\right )\) | \(23\) |
risch | \(\frac {x}{4}-\ln \relax (x )+\ln \left (-x -\ln \relax (2)+\ln \left (-x +4\right )+4\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 24, normalized size = 0.89 \begin {gather*} \frac {1}{4} \, x - \log \relax (x) + \log \left (-x - \log \relax (2) + \log \left (-x + 4\right ) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {28\,x-\ln \left (4-x\right )\,\left (x^2-8\,x+16\right )-8\,x^2+x^3+\ln \relax (2)\,\left (x^2-8\,x+16\right )-64}{64\,x-\ln \relax (2)\,\left (16\,x-4\,x^2\right )+\ln \left (4-x\right )\,\left (16\,x-4\,x^2\right )-32\,x^2+4\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 19, normalized size = 0.70 \begin {gather*} \frac {x}{4} - \log {\relax (x )} + \log {\left (- x + \log {\left (4 - x \right )} - \log {\relax (2 )} + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________