Optimal. Leaf size=20 \[ 3+e^{2+x}+e^{-225 x^2} (4-x) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 25, normalized size of antiderivative = 1.25, number of steps used = 7, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {6742, 2205, 2194, 2209, 2212} \begin {gather*} -e^{-225 x^2} x+4 e^{-225 x^2}+e^{x+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2205
Rule 2209
Rule 2212
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{-225 x^2}+e^{2+x}-1800 e^{-225 x^2} x+450 e^{-225 x^2} x^2\right ) \, dx\\ &=450 \int e^{-225 x^2} x^2 \, dx-1800 \int e^{-225 x^2} x \, dx-\int e^{-225 x^2} \, dx+\int e^{2+x} \, dx\\ &=4 e^{-225 x^2}+e^{2+x}-e^{-225 x^2} x-\frac {1}{30} \sqrt {\pi } \text {erf}(15 x)+\int e^{-225 x^2} \, dx\\ &=4 e^{-225 x^2}+e^{2+x}-e^{-225 x^2} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 25, normalized size = 1.25 \begin {gather*} 4 e^{-225 x^2}+e^{2+x}-e^{-225 x^2} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 16, normalized size = 0.80 \begin {gather*} -{\left (x - 4\right )} e^{\left (-225 \, x^{2}\right )} + e^{\left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 16, normalized size = 0.80 \begin {gather*} -{\left (x - 4\right )} e^{\left (-225 \, x^{2}\right )} + e^{\left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.90
method | result | size |
risch | \({\mathrm e}^{2+x}+\left (-x +4\right ) {\mathrm e}^{-225 x^{2}}\) | \(18\) |
default | \({\mathrm e}^{2} {\mathrm e}^{x}+4 \,{\mathrm e}^{-225 x^{2}}-x \,{\mathrm e}^{-225 x^{2}}\) | \(24\) |
norman | \(\left (4+{\mathrm e}^{2+x} {\mathrm e}^{225 x^{2}}-x \right ) {\mathrm e}^{-225 x^{2}}\) | \(26\) |
meijerg | \(-{\mathrm e}^{2} \left (1-{\mathrm e}^{x}\right )-x \,{\mathrm e}^{-225 x^{2}}-4+4 \,{\mathrm e}^{-225 x^{2}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 22, normalized size = 1.10 \begin {gather*} -x e^{\left (-225 \, x^{2}\right )} + 4 \, e^{\left (-225 \, x^{2}\right )} + e^{\left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.30, size = 22, normalized size = 1.10 \begin {gather*} {\mathrm {e}}^{x+2}+4\,{\mathrm {e}}^{-225\,x^2}-x\,{\mathrm {e}}^{-225\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 14, normalized size = 0.70 \begin {gather*} \left (4 - x\right ) e^{- 225 x^{2}} + e^{x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________