Optimal. Leaf size=19 \[ \log \left (e^{4096}-\frac {4 (2 x-\log (9))}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.45, antiderivative size = 22, normalized size of antiderivative = 1.16, number of steps used = 7, number of rules used = 6, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {6741, 12, 6742, 2302, 29, 6684} \begin {gather*} \log \left (8 x-e^{4096} \log (x)-4 \log (9)\right )-\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2302
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 (-2 x+\log (9)+2 x \log (x))}{x \log (x) \left (8 x-4 \log (9)-e^{4096} \log (x)\right )} \, dx\\ &=4 \int \frac {-2 x+\log (9)+2 x \log (x)}{x \log (x) \left (8 x-4 \log (9)-e^{4096} \log (x)\right )} \, dx\\ &=4 \int \left (-\frac {1}{4 x \log (x)}+\frac {e^{4096}-8 x}{4 x \left (-8 x+4 \log (9)+e^{4096} \log (x)\right )}\right ) \, dx\\ &=-\int \frac {1}{x \log (x)} \, dx+\int \frac {e^{4096}-8 x}{x \left (-8 x+4 \log (9)+e^{4096} \log (x)\right )} \, dx\\ &=\log \left (8 x-4 \log (9)-e^{4096} \log (x)\right )-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=-\log (\log (x))+\log \left (8 x-4 \log (9)-e^{4096} \log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 30, normalized size = 1.58 \begin {gather*} 4 \left (-\frac {1}{4} \log (\log (x))+\frac {1}{4} \log \left (8 x-4 \log (9)-e^{4096} \log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 20, normalized size = 1.05 \begin {gather*} \log \left (e^{4096} \log \relax (x) - 8 \, x + 8 \, \log \relax (3)\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 21, normalized size = 1.11 \begin {gather*} \log \left (-e^{4096} \log \relax (x) + 8 \, x - 8 \, \log \relax (3)\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 1.11
method | result | size |
norman | \(-\ln \left (\ln \relax (x )\right )+\ln \left ({\mathrm e}^{4096} \ln \relax (x )+8 \ln \relax (3)-8 x \right )\) | \(21\) |
risch | \(-\ln \left (\ln \relax (x )\right )+\ln \left (\ln \relax (x )+8 \left (\ln \relax (3)-x \right ) {\mathrm e}^{-4096}\right )\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 23, normalized size = 1.21 \begin {gather*} \log \left ({\left (e^{4096} \log \relax (x) - 8 \, x + 8 \, \log \relax (3)\right )} e^{\left (-4096\right )}\right ) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.24, size = 19, normalized size = 1.00 \begin {gather*} \ln \left (x-\ln \relax (3)-\frac {{\mathrm {e}}^{4096}\,\ln \relax (x)}{8}\right )-\ln \left (\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 20, normalized size = 1.05 \begin {gather*} \log {\left (\frac {- 8 x + 8 \log {\relax (3 )}}{e^{4096}} + \log {\relax (x )} \right )} - \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________