Optimal. Leaf size=27 \[ \frac {e^{25+e}}{4}+\frac {x}{e^3}+\frac {e^x}{\log \left (e^4 x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.34, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 6688, 2288} \begin {gather*} \frac {x}{e^3}+\frac {e^x (4 x+x \log (x))}{x (\log (x)+4)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-e^{3+x}+e^{3+x} x \log \left (e^4 x\right )+x \log ^2\left (e^4 x\right )}{x \log ^2\left (e^4 x\right )} \, dx}{e^3}\\ &=\frac {\int \left (1+\frac {e^{3+x} (-1+4 x+x \log (x))}{x (4+\log (x))^2}\right ) \, dx}{e^3}\\ &=\frac {x}{e^3}+\frac {\int \frac {e^{3+x} (-1+4 x+x \log (x))}{x (4+\log (x))^2} \, dx}{e^3}\\ &=\frac {x}{e^3}+\frac {e^x (4 x+x \log (x))}{x (4+\log (x))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 27, normalized size = 1.00 \begin {gather*} \frac {x}{e^3}+\frac {e^x (4 x+x \log (x))}{x (4+\log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 22, normalized size = 0.81 \begin {gather*} \frac {{\left (x \log \left (x e^{4}\right ) + e^{\left (x + 3\right )}\right )} e^{\left (-3\right )}}{\log \left (x e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 21, normalized size = 0.78 \begin {gather*} \frac {{\left (x \log \relax (x) + 4 \, x + e^{\left (x + 3\right )}\right )} e^{\left (-3\right )}}{\log \relax (x) + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.59
method | result | size |
risch | \(x \,{\mathrm e}^{-3}+\frac {{\mathrm e}^{x}}{\ln \left (x \,{\mathrm e}^{4}\right )}\) | \(16\) |
default | \({\mathrm e}^{-3} \left (x +\frac {{\mathrm e}^{3} {\mathrm e}^{x}}{\ln \left (x \,{\mathrm e}^{4}\right )}\right )\) | \(20\) |
norman | \(\frac {x \,{\mathrm e}^{-3} \ln \left (x \,{\mathrm e}^{4}\right )+{\mathrm e}^{x}}{\ln \left (x \,{\mathrm e}^{4}\right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 16, normalized size = 0.59 \begin {gather*} {\left (x + \frac {e^{\left (x + 3\right )}}{\log \relax (x) + 4}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.18, size = 14, normalized size = 0.52 \begin {gather*} x\,{\mathrm {e}}^{-3}+\frac {{\mathrm {e}}^x}{\ln \relax (x)+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 14, normalized size = 0.52 \begin {gather*} \frac {x}{e^{3}} + \frac {e^{x}}{\log {\left (x e^{4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________