Optimal. Leaf size=17 \[ x \left (-5-\frac {4}{e^3}+2 x-25 x^4\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 20, normalized size of antiderivative = 1.18, number of steps used = 3, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {12} \begin {gather*} -25 x^5+2 x^2-\frac {4 x}{e^3}-5 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-4+e^3 \left (-5+4 x-125 x^4\right )\right ) \, dx}{e^3}\\ &=-\frac {4 x}{e^3}+\int \left (-5+4 x-125 x^4\right ) \, dx\\ &=-5 x-\frac {4 x}{e^3}+2 x^2-25 x^5\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 20, normalized size = 1.18 \begin {gather*} -5 x-\frac {4 x}{e^3}+2 x^2-25 x^5 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 25, normalized size = 1.47 \begin {gather*} -{\left ({\left (25 \, x^{5} - 2 \, x^{2} + 5 \, x\right )} e^{3} + 4 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 25, normalized size = 1.47 \begin {gather*} -{\left ({\left (25 \, x^{5} - 2 \, x^{2} + 5 \, x\right )} e^{3} + 4 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 1.18
method | result | size |
risch | \(-25 x^{5}+2 x^{2}-5 x -4 x \,{\mathrm e}^{-3}\) | \(20\) |
norman | \(2 x^{2}-25 x^{5}-{\mathrm e}^{-3} \left (5 \,{\mathrm e}^{3}+4\right ) x\) | \(25\) |
gosper | \(-x \left (25 x^{4} {\mathrm e}^{3}-2 x \,{\mathrm e}^{3}+5 \,{\mathrm e}^{3}+4\right ) {\mathrm e}^{-3}\) | \(26\) |
default | \({\mathrm e}^{-3} \left ({\mathrm e}^{3} \left (-25 x^{5}+2 x^{2}-5 x \right )-4 x \right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 25, normalized size = 1.47 \begin {gather*} -{\left ({\left (25 \, x^{5} - 2 \, x^{2} + 5 \, x\right )} e^{3} + 4 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 20, normalized size = 1.18 \begin {gather*} -25\,x^5+2\,x^2+\left (-4\,{\mathrm {e}}^{-3}-5\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 22, normalized size = 1.29 \begin {gather*} - 25 x^{5} + 2 x^{2} + \frac {x \left (- 5 e^{3} - 4\right )}{e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________