Optimal. Leaf size=23 \[ -7 x \left (e^2-5 e^3-\log \left (\frac {\log \left (\frac {1}{x}\right )}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 29, normalized size of antiderivative = 1.26, number of steps used = 10, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {6742, 2360, 2299, 2178, 2549} \begin {gather*} -7 \left (1+e^2-5 e^3\right ) x+7 x+7 x \log \left (\frac {\log \left (\frac {1}{x}\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2299
Rule 2360
Rule 2549
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {7 \left (-1-\left (1+(1-5 e) e^2\right ) \log \left (\frac {1}{x}\right )\right )}{\log \left (\frac {1}{x}\right )}+7 \log \left (\frac {\log \left (\frac {1}{x}\right )}{x}\right )\right ) \, dx\\ &=7 \int \frac {-1+\left (-1-(1-5 e) e^2\right ) \log \left (\frac {1}{x}\right )}{\log \left (\frac {1}{x}\right )} \, dx+7 \int \log \left (\frac {\log \left (\frac {1}{x}\right )}{x}\right ) \, dx\\ &=7 x \log \left (\frac {\log \left (\frac {1}{x}\right )}{x}\right )-7 \int \left (-1-\frac {1}{\log \left (\frac {1}{x}\right )}\right ) \, dx+7 \int \left (-1-(1-5 e) e^2-\frac {1}{\log \left (\frac {1}{x}\right )}\right ) \, dx\\ &=7 x-7 \left (1+e^2-5 e^3\right ) x+7 x \log \left (\frac {\log \left (\frac {1}{x}\right )}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.09 \begin {gather*} -7 e^2 x+35 e^3 x+7 x \log \left (\frac {\log \left (\frac {1}{x}\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 23, normalized size = 1.00 \begin {gather*} 35 \, x e^{3} - 7 \, x e^{2} + 7 \, x \log \left (\frac {\log \left (\frac {1}{x}\right )}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 24, normalized size = 1.04 \begin {gather*} 35 \, x e^{3} - 7 \, x e^{2} - 7 \, x \log \relax (x) + 7 \, x \log \left (-\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 24, normalized size = 1.04
method | result | size |
default | \(-7 \,{\mathrm e}^{2} x +35 x \,{\mathrm e}^{3}+7 \ln \left (\frac {\ln \left (\frac {1}{x}\right )}{x}\right ) x\) | \(24\) |
norman | \(\left (35 \,{\mathrm e}^{3}-7 \,{\mathrm e}^{2}\right ) x +7 \ln \left (\frac {\ln \left (\frac {1}{x}\right )}{x}\right ) x\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 35 \, x e^{3} - 7 \, x e^{2} - 7 \, x \log \relax (x) + 7 \, x \log \left (-\log \relax (x)\right ) + 7 \, {\rm Ei}\left (\log \relax (x)\right ) - 7 \, \int \frac {1}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.05, size = 21, normalized size = 0.91 \begin {gather*} 7\,x\,\left (5\,{\mathrm {e}}^3-{\mathrm {e}}^2+\ln \left (\frac {\ln \left (\frac {1}{x}\right )}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.96 \begin {gather*} 7 x \log {\left (\frac {\log {\left (\frac {1}{x} \right )}}{x} \right )} + x \left (- 7 e^{2} + 35 e^{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________