Optimal. Leaf size=31 \[ e^{-2+\frac {-1+e^2-e^4-\log (3)}{5+e^{4 x}-x}} \]
________________________________________________________________________________________
Rubi [F] time = 10.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-11+e^2-e^4-2 e^{4 x}+2 x-\log (3)}{5+e^{4 x}-x}\right ) \left (-1+e^2-e^4-\log (3)+e^{4 x} \left (4-4 e^2+4 e^4+4 \log (3)\right )\right )}{25+e^{8 x}+e^{4 x} (10-2 x)-10 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right ) \left (1-4 e^{4 x}\right ) \left (-1+e^2-e^4-\log (3)\right )}{\left (5+e^{4 x}-x\right )^2} \, dx\\ &=\left (-1+e^2-e^4-\log (3)\right ) \int \frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right ) \left (1-4 e^{4 x}\right )}{\left (5+e^{4 x}-x\right )^2} \, dx\\ &=\left (-1+e^2-e^4-\log (3)\right ) \int \left (-\frac {4 \exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right )}{5+e^{4 x}-x}-\frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right ) (-21+4 x)}{\left (-5-e^{4 x}+x\right )^2}\right ) \, dx\\ &=\left (1-e^2+e^4+\log (3)\right ) \int \frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right ) (-21+4 x)}{\left (-5-e^{4 x}+x\right )^2} \, dx+\left (4 \left (1-e^2+e^4+\log (3)\right )\right ) \int \frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right )}{5+e^{4 x}-x} \, dx\\ &=\left (1-e^2+e^4+\log (3)\right ) \int \left (-\frac {21 \exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right )}{\left (5+e^{4 x}-x\right )^2}+\frac {4 \exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right ) x}{\left (5+e^{4 x}-x\right )^2}\right ) \, dx+\left (4 \left (1-e^2+e^4+\log (3)\right )\right ) \int \frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right )}{5+e^{4 x}-x} \, dx\\ &=\left (4 \left (1-e^2+e^4+\log (3)\right )\right ) \int \frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right )}{5+e^{4 x}-x} \, dx+\left (4 \left (1-e^2+e^4+\log (3)\right )\right ) \int \frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right ) x}{\left (5+e^{4 x}-x\right )^2} \, dx-\left (21 \left (1-e^2+e^4+\log (3)\right )\right ) \int \frac {\exp \left (\frac {-2 e^{4 x}+2 x-11 \left (1+\frac {1}{11} \left (-e^2+e^4+\log (3)\right )\right )}{5+e^{4 x}-x}\right )}{\left (5+e^{4 x}-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.93, size = 44, normalized size = 1.42 \begin {gather*} 3^{-\frac {1}{5+e^{4 x}-x}} e^{-2+\frac {-1+e^2-e^4}{5+e^{4 x}-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 35, normalized size = 1.13 \begin {gather*} e^{\left (-\frac {2 \, x - e^{4} + e^{2} - 2 \, e^{\left (4 \, x\right )} - \log \relax (3) - 11}{x - e^{\left (4 \, x\right )} - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, {\left (e^{4} - e^{2} + \log \relax (3) + 1\right )} e^{\left (4 \, x\right )} - e^{4} + e^{2} - \log \relax (3) - 1\right )} e^{\left (-\frac {2 \, x - e^{4} + e^{2} - 2 \, e^{\left (4 \, x\right )} - \log \relax (3) - 11}{x - e^{\left (4 \, x\right )} - 5}\right )}}{x^{2} - 2 \, {\left (x - 5\right )} e^{\left (4 \, x\right )} - 10 \, x + e^{\left (8 \, x\right )} + 25}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.53, size = 36, normalized size = 1.16
method | result | size |
risch | \({\mathrm e}^{-\frac {-2 \,{\mathrm e}^{4 x}-\ln \relax (3)-{\mathrm e}^{4}+{\mathrm e}^{2}+2 x -11}{x -{\mathrm e}^{4 x}-5}}\) | \(36\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {-2 \,{\mathrm e}^{4 x}-\ln \relax (3)-{\mathrm e}^{4}+{\mathrm e}^{2}+2 x -11}{{\mathrm e}^{4 x}+5-x}}-{\mathrm e}^{4 x} {\mathrm e}^{\frac {-2 \,{\mathrm e}^{4 x}-\ln \relax (3)-{\mathrm e}^{4}+{\mathrm e}^{2}+2 x -11}{{\mathrm e}^{4 x}+5-x}}-5 \,{\mathrm e}^{\frac {-2 \,{\mathrm e}^{4 x}-\ln \relax (3)-{\mathrm e}^{4}+{\mathrm e}^{2}+2 x -11}{{\mathrm e}^{4 x}+5-x}}}{x -{\mathrm e}^{4 x}-5}\) | \(126\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 57, normalized size = 1.84 \begin {gather*} e^{\left (\frac {e^{4}}{x - e^{\left (4 \, x\right )} - 5} - \frac {e^{2}}{x - e^{\left (4 \, x\right )} - 5} + \frac {\log \relax (3)}{x - e^{\left (4 \, x\right )} - 5} + \frac {1}{x - e^{\left (4 \, x\right )} - 5} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 94, normalized size = 3.03 \begin {gather*} \frac {{\mathrm {e}}^{\frac {2\,x}{{\mathrm {e}}^{4\,x}-x+5}}\,{\mathrm {e}}^{-\frac {11}{{\mathrm {e}}^{4\,x}-x+5}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^{4\,x}}{{\mathrm {e}}^{4\,x}-x+5}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^2}{{\mathrm {e}}^{4\,x}-x+5}}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^4}{{\mathrm {e}}^{4\,x}-x+5}}}{3^{\frac {1}{{\mathrm {e}}^{4\,x}-x+5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.54, size = 31, normalized size = 1.00 \begin {gather*} e^{\frac {2 x - 2 e^{4 x} - e^{4} - 11 - \log {\relax (3 )} + e^{2}}{- x + e^{4 x} + 5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________