Optimal. Leaf size=30 \[ 5 x-\left (4+\frac {1+e^3}{x}-x\right ) \left (1+\frac {2}{1+\log (2)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 34, normalized size of antiderivative = 1.13, number of steps used = 4, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {6, 12, 14} \begin {gather*} \frac {2 x (4+\log (8))}{1+\log (2)}-\frac {\left (1+e^3\right ) (3+\log (2))}{x (1+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+3 e^3+8 x^2+\left (1+e^3+6 x^2\right ) \log (2)}{x^2 (1+\log (2))} \, dx\\ &=\frac {\int \frac {3+3 e^3+8 x^2+\left (1+e^3+6 x^2\right ) \log (2)}{x^2} \, dx}{1+\log (2)}\\ &=\frac {\int \left (8 \left (1+\frac {3 \log (2)}{4}\right )+\frac {\left (1+e^3\right ) (3+\log (2))}{x^2}\right ) \, dx}{1+\log (2)}\\ &=-\frac {\left (1+e^3\right ) (3+\log (2))}{x (1+\log (2))}+\frac {2 x (4+\log (8))}{1+\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 32, normalized size = 1.07 \begin {gather*} -\frac {3+\log (2)+e^3 (3+\log (2))-x^2 (8+\log (64))}{x (1+\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 34, normalized size = 1.13 \begin {gather*} \frac {8 \, x^{2} + {\left (6 \, x^{2} - e^{3} - 1\right )} \log \relax (2) - 3 \, e^{3} - 3}{x \log \relax (2) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 42, normalized size = 1.40 \begin {gather*} \frac {2 \, {\left (3 \, x \log \relax (2) + 4 \, x\right )}}{\log \relax (2) + 1} - \frac {e^{3} \log \relax (2) + 3 \, e^{3} + \log \relax (2) + 3}{x {\left (\log \relax (2) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 35, normalized size = 1.17
method | result | size |
default | \(\frac {6 x \ln \relax (2)+8 x -\frac {{\mathrm e}^{3} \ln \relax (2)+\ln \relax (2)+3 \,{\mathrm e}^{3}+3}{x}}{1+\ln \relax (2)}\) | \(35\) |
gosper | \(-\frac {-6 x^{2} \ln \relax (2)+{\mathrm e}^{3} \ln \relax (2)-8 x^{2}+\ln \relax (2)+3 \,{\mathrm e}^{3}+3}{x \left (1+\ln \relax (2)\right )}\) | \(37\) |
norman | \(\frac {-\frac {{\mathrm e}^{3} \ln \relax (2)+\ln \relax (2)+3 \,{\mathrm e}^{3}+3}{1+\ln \relax (2)}+\frac {2 \left (3 \ln \relax (2)+4\right ) x^{2}}{1+\ln \relax (2)}}{x}\) | \(44\) |
risch | \(\frac {6 x \ln \relax (2)}{1+\ln \relax (2)}+\frac {8 x}{1+\ln \relax (2)}-\frac {\ln \relax (2)^{2} {\mathrm e}^{3}}{\left (1+\ln \relax (2)\right )^{2} x}-\frac {\ln \relax (2)^{2}}{\left (1+\ln \relax (2)\right )^{2} x}-\frac {4 \ln \relax (2) {\mathrm e}^{3}}{\left (1+\ln \relax (2)\right )^{2} x}-\frac {4 \ln \relax (2)}{\left (1+\ln \relax (2)\right )^{2} x}-\frac {3 \,{\mathrm e}^{3}}{\left (1+\ln \relax (2)\right )^{2} x}-\frac {3}{\left (1+\ln \relax (2)\right )^{2} x}\) | \(106\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 40, normalized size = 1.33 \begin {gather*} \frac {2 \, x {\left (3 \, \log \relax (2) + 4\right )}}{\log \relax (2) + 1} - \frac {{\left (e^{3} + 1\right )} \log \relax (2) + 3 \, e^{3} + 3}{x {\left (\log \relax (2) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 37, normalized size = 1.23 \begin {gather*} \frac {x\,\left (\ln \left (64\right )+8\right )}{\ln \relax (2)+1}-\frac {3\,{\mathrm {e}}^3+\ln \relax (2)+{\mathrm {e}}^3\,\ln \relax (2)+3}{x\,\left (\ln \relax (2)+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 32, normalized size = 1.07 \begin {gather*} \frac {x \left (6 \log {\relax (2 )} + 8\right ) + \frac {- 3 e^{3} - e^{3} \log {\relax (2 )} - 3 - \log {\relax (2 )}}{x}}{\log {\relax (2 )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________