Optimal. Leaf size=24 \[ -e^{e^x}+\frac {15 e^5}{x^2 \log \left (\frac {4}{x}\right )} \]
________________________________________________________________________________________
Rubi [C] time = 0.57, antiderivative size = 106, normalized size of antiderivative = 4.42, number of steps used = 10, number of rules used = 8, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.163, Rules used = {6742, 2282, 2194, 2306, 2310, 2178, 2366, 6482} \begin {gather*} -\frac {15}{8} e^5 \left (1-2 \log \left (\frac {4}{x}\right )\right ) \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right )-\frac {15}{4} e^5 \log \left (\frac {4}{x}\right ) \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right )+\frac {15}{8} e^5 \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right )+\frac {30 e^5}{x^2}+\frac {15 e^5 \left (1-2 \log \left (\frac {4}{x}\right )\right )}{x^2 \log \left (\frac {4}{x}\right )}-e^{e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2194
Rule 2282
Rule 2306
Rule 2310
Rule 2366
Rule 6482
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{e^x+x}-\frac {15 e^5 \left (-1+2 \log \left (\frac {4}{x}\right )\right )}{x^3 \log ^2\left (\frac {4}{x}\right )}\right ) \, dx\\ &=-\left (\left (15 e^5\right ) \int \frac {-1+2 \log \left (\frac {4}{x}\right )}{x^3 \log ^2\left (\frac {4}{x}\right )} \, dx\right )-\int e^{e^x+x} \, dx\\ &=-\frac {15}{8} e^5 \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right ) \left (1-2 \log \left (\frac {4}{x}\right )\right )+\frac {15 e^5 \left (1-2 \log \left (\frac {4}{x}\right )\right )}{x^2 \log \left (\frac {4}{x}\right )}-\left (30 e^5\right ) \int \left (-\frac {\text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right )}{8 x}+\frac {1}{x^3 \log \left (\frac {4}{x}\right )}\right ) \, dx-\operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )\\ &=-e^{e^x}-\frac {15}{8} e^5 \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right ) \left (1-2 \log \left (\frac {4}{x}\right )\right )+\frac {15 e^5 \left (1-2 \log \left (\frac {4}{x}\right )\right )}{x^2 \log \left (\frac {4}{x}\right )}+\frac {1}{4} \left (15 e^5\right ) \int \frac {\text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right )}{x} \, dx-\left (30 e^5\right ) \int \frac {1}{x^3 \log \left (\frac {4}{x}\right )} \, dx\\ &=-e^{e^x}-\frac {15}{8} e^5 \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right ) \left (1-2 \log \left (\frac {4}{x}\right )\right )+\frac {15 e^5 \left (1-2 \log \left (\frac {4}{x}\right )\right )}{x^2 \log \left (\frac {4}{x}\right )}+\frac {1}{8} \left (15 e^5\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (\frac {4}{x}\right )\right )-\frac {1}{4} \left (15 e^5\right ) \operatorname {Subst}\left (\int \text {Ei}(2 x) \, dx,x,\log \left (\frac {4}{x}\right )\right )\\ &=-e^{e^x}+\frac {30 e^5}{x^2}+\frac {15}{8} e^5 \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right )-\frac {15}{8} e^5 \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right ) \left (1-2 \log \left (\frac {4}{x}\right )\right )+\frac {15 e^5 \left (1-2 \log \left (\frac {4}{x}\right )\right )}{x^2 \log \left (\frac {4}{x}\right )}-\frac {15}{4} e^5 \text {Ei}\left (2 \log \left (\frac {4}{x}\right )\right ) \log \left (\frac {4}{x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 1.00 \begin {gather*} -e^{e^x}+\frac {15 e^5}{x^2 \log \left (\frac {4}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 39, normalized size = 1.62 \begin {gather*} -\frac {{\left (x^{2} e^{\left (x + e^{x}\right )} \log \left (\frac {4}{x}\right ) - 15 \, e^{\left (x + 5\right )}\right )} e^{\left (-x\right )}}{x^{2} \log \left (\frac {4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 39, normalized size = 1.62 \begin {gather*} -\frac {{\left (x^{2} e^{\left (x + e^{x}\right )} \log \left (\frac {4}{x}\right ) - 15 \, e^{\left (x + 5\right )}\right )} e^{\left (-x\right )}}{x^{2} \log \left (\frac {4}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 22, normalized size = 0.92
method | result | size |
default | \(\frac {15 \,{\mathrm e}^{5}}{x^{2} \ln \left (\frac {4}{x}\right )}-{\mathrm e}^{{\mathrm e}^{x}}\) | \(22\) |
risch | \(\frac {30 i {\mathrm e}^{5}}{x^{2} \left (4 i \ln \relax (2)-2 i \ln \relax (x )\right )}-{\mathrm e}^{{\mathrm e}^{x}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 43, normalized size = 1.79 \begin {gather*} -\frac {{\left (2 \, x^{2} \log \relax (2) - x^{2} \log \relax (x)\right )} e^{\left (e^{x}\right )} - 15 \, e^{5}}{2 \, x^{2} \log \relax (2) - x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.91, size = 21, normalized size = 0.88 \begin {gather*} \frac {15\,{\mathrm {e}}^5}{x^2\,\ln \left (\frac {4}{x}\right )}-{\mathrm {e}}^{{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 17, normalized size = 0.71 \begin {gather*} - e^{e^{x}} + \frac {15 e^{5}}{x^{2} \log {\left (\frac {4}{x} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________