Optimal. Leaf size=23 \[ x^2 \log \left (\left (x+\frac {5 x^2}{\left (\frac {7}{4}-x\right )^2}\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.66, antiderivative size = 28, normalized size of antiderivative = 1.22, number of steps used = 36, number of rules used = 10, integrand size = 107, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {6688, 12, 6742, 1628, 634, 618, 204, 628, 2074, 2525} \begin {gather*} x^2 \log \left (\frac {x^2 \left (16 x^2+24 x+49\right )^2}{(7-4 x)^4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 618
Rule 628
Rule 634
Rule 1628
Rule 2074
Rule 2525
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (343+532 x+336 x^2-64 x^3-\left (-343+28 x-16 x^2+64 x^3\right ) \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(-7+4 x)^4}\right )\right )}{343-28 x+16 x^2-64 x^3} \, dx\\ &=2 \int \frac {x \left (343+532 x+336 x^2-64 x^3-\left (-343+28 x-16 x^2+64 x^3\right ) \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(-7+4 x)^4}\right )\right )}{343-28 x+16 x^2-64 x^3} \, dx\\ &=2 \int \left (\frac {64 x^4}{(-7+4 x) \left (49+24 x+16 x^2\right )}-\frac {343 x}{-343+28 x-16 x^2+64 x^3}-\frac {532 x^2}{-343+28 x-16 x^2+64 x^3}-\frac {336 x^3}{-343+28 x-16 x^2+64 x^3}+x \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(-7+4 x)^4}\right )\right ) \, dx\\ &=2 \int x \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(-7+4 x)^4}\right ) \, dx+128 \int \frac {x^4}{(-7+4 x) \left (49+24 x+16 x^2\right )} \, dx-672 \int \frac {x^3}{-343+28 x-16 x^2+64 x^3} \, dx-686 \int \frac {x}{-343+28 x-16 x^2+64 x^3} \, dx-1064 \int \frac {x^2}{-343+28 x-16 x^2+64 x^3} \, dx\\ &=x^2 \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(7-4 x)^4}\right )+128 \int \left (\frac {1}{256}+\frac {x}{64}+\frac {343}{5120 (-7+4 x)}+\frac {1421-1852 x}{5120 \left (49+24 x+16 x^2\right )}\right ) \, dx-672 \int \left (\frac {1}{64}+\frac {49}{1280 (-7+4 x)}+\frac {-637-116 x}{1280 \left (49+24 x+16 x^2\right )}\right ) \, dx-686 \int \left (\frac {1}{80 (-7+4 x)}+\frac {7-4 x}{80 \left (49+24 x+16 x^2\right )}\right ) \, dx-1064 \int \left (\frac {7}{320 (-7+4 x)}+\frac {49+52 x}{320 \left (49+24 x+16 x^2\right )}\right ) \, dx-\int \frac {2 x \left (343+532 x+336 x^2-64 x^3\right )}{(7-4 x) \left (49+24 x+16 x^2\right )} \, dx\\ &=-10 x+x^2-\frac {49}{4} \log (7-4 x)+x^2 \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(7-4 x)^4}\right )+\frac {1}{40} \int \frac {1421-1852 x}{49+24 x+16 x^2} \, dx-\frac {21}{40} \int \frac {-637-116 x}{49+24 x+16 x^2} \, dx-2 \int \frac {x \left (343+532 x+336 x^2-64 x^3\right )}{(7-4 x) \left (49+24 x+16 x^2\right )} \, dx-\frac {133}{40} \int \frac {49+52 x}{49+24 x+16 x^2} \, dx-\frac {343}{40} \int \frac {7-4 x}{49+24 x+16 x^2} \, dx\\ &=-10 x+x^2-\frac {49}{4} \log (7-4 x)+x^2 \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(7-4 x)^4}\right )+\frac {343}{320} \int \frac {24+32 x}{49+24 x+16 x^2} \, dx-\frac {463}{320} \int \frac {24+32 x}{49+24 x+16 x^2} \, dx+\frac {609}{320} \int \frac {24+32 x}{49+24 x+16 x^2} \, dx-2 \int \left (-5+x-\frac {49}{2 (-7+4 x)}+\frac {147-124 x}{2 \left (49+24 x+16 x^2\right )}\right ) \, dx-\frac {1729}{320} \int \frac {24+32 x}{49+24 x+16 x^2} \, dx-\frac {133}{4} \int \frac {1}{49+24 x+16 x^2} \, dx+\frac {281}{4} \int \frac {1}{49+24 x+16 x^2} \, dx-\frac {343}{4} \int \frac {1}{49+24 x+16 x^2} \, dx+\frac {1155}{4} \int \frac {1}{49+24 x+16 x^2} \, dx\\ &=-\frac {31}{8} \log \left (49+24 x+16 x^2\right )+x^2 \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(7-4 x)^4}\right )+\frac {133}{2} \operatorname {Subst}\left (\int \frac {1}{-2560-x^2} \, dx,x,24+32 x\right )-\frac {281}{2} \operatorname {Subst}\left (\int \frac {1}{-2560-x^2} \, dx,x,24+32 x\right )+\frac {343}{2} \operatorname {Subst}\left (\int \frac {1}{-2560-x^2} \, dx,x,24+32 x\right )-\frac {1155}{2} \operatorname {Subst}\left (\int \frac {1}{-2560-x^2} \, dx,x,24+32 x\right )-\int \frac {147-124 x}{49+24 x+16 x^2} \, dx\\ &=3 \sqrt {10} \tan ^{-1}\left (\frac {3+4 x}{2 \sqrt {10}}\right )-\frac {31}{8} \log \left (49+24 x+16 x^2\right )+x^2 \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(7-4 x)^4}\right )+\frac {31}{8} \int \frac {24+32 x}{49+24 x+16 x^2} \, dx-240 \int \frac {1}{49+24 x+16 x^2} \, dx\\ &=3 \sqrt {10} \tan ^{-1}\left (\frac {3+4 x}{2 \sqrt {10}}\right )+x^2 \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(7-4 x)^4}\right )+480 \operatorname {Subst}\left (\int \frac {1}{-2560-x^2} \, dx,x,24+32 x\right )\\ &=x^2 \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(7-4 x)^4}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 1.22 \begin {gather*} x^2 \log \left (\frac {x^2 \left (49+24 x+16 x^2\right )^2}{(-7+4 x)^4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.50, size = 54, normalized size = 2.35 \begin {gather*} x^{2} \log \left (\frac {256 \, x^{6} + 768 \, x^{5} + 2144 \, x^{4} + 2352 \, x^{3} + 2401 \, x^{2}}{256 \, x^{4} - 1792 \, x^{3} + 4704 \, x^{2} - 5488 \, x + 2401}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 54, normalized size = 2.35 \begin {gather*} x^{2} \log \left (\frac {256 \, x^{6} + 768 \, x^{5} + 2144 \, x^{4} + 2352 \, x^{3} + 2401 \, x^{2}}{256 \, x^{4} - 1792 \, x^{3} + 4704 \, x^{2} - 5488 \, x + 2401}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 52, normalized size = 2.26
method | result | size |
default | \(\ln \left (\frac {x^{2} \left (256 x^{4}+768 x^{3}+2144 x^{2}+2352 x +2401\right )}{256 x^{4}-1792 x^{3}+4704 x^{2}-5488 x +2401}\right ) x^{2}\) | \(52\) |
norman | \(x^{2} \ln \left (\frac {256 x^{6}+768 x^{5}+2144 x^{4}+2352 x^{3}+2401 x^{2}}{256 x^{4}-1792 x^{3}+4704 x^{2}-5488 x +2401}\right )\) | \(55\) |
risch | \(x^{2} \ln \left (\frac {256 x^{6}+768 x^{5}+2144 x^{4}+2352 x^{3}+2401 x^{2}}{256 x^{4}-1792 x^{3}+4704 x^{2}-5488 x +2401}\right )\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.17, size = 64, normalized size = 2.78 \begin {gather*} 2 \, x^{2} \log \relax (x) + \frac {1}{8} \, {\left (16 \, x^{2} + 31\right )} \log \left (16 \, x^{2} + 24 \, x + 49\right ) - \frac {1}{4} \, {\left (16 \, x^{2} - 49\right )} \log \left (4 \, x - 7\right ) - \frac {31}{8} \, \log \left (16 \, x^{2} + 24 \, x + 49\right ) - \frac {49}{4} \, \log \left (4 \, x - 7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.21, size = 55, normalized size = 2.39 \begin {gather*} x^2\,\left (\ln \left (\frac {1}{256\,x^4-1792\,x^3+4704\,x^2-5488\,x+2401}\right )+\ln \left (256\,x^6+768\,x^5+2144\,x^4+2352\,x^3+2401\,x^2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 49, normalized size = 2.13 \begin {gather*} x^{2} \log {\left (\frac {256 x^{6} + 768 x^{5} + 2144 x^{4} + 2352 x^{3} + 2401 x^{2}}{256 x^{4} - 1792 x^{3} + 4704 x^{2} - 5488 x + 2401} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________