Optimal. Leaf size=20 \[ -4-e^{\log \left (e^x x\right ) \log (2+x)}+2 x \]
________________________________________________________________________________________
Rubi [F] time = 1.58, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x+2 x^2+e^{\log \left (e^x x\right ) \log (2+x)} \left (-x \log \left (e^x x\right )+\left (-2-3 x-x^2\right ) \log (2+x)\right )}{2 x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x+2 x^2+e^{\log \left (e^x x\right ) \log (2+x)} \left (-x \log \left (e^x x\right )+\left (-2-3 x-x^2\right ) \log (2+x)\right )}{x (2+x)} \, dx\\ &=\int \left (2-\frac {\left (e^x x\right )^{\log (2+x)} \left (x \log \left (e^x x\right )+2 \log (2+x)+3 x \log (2+x)+x^2 \log (2+x)\right )}{x (2+x)}\right ) \, dx\\ &=2 x-\int \frac {\left (e^x x\right )^{\log (2+x)} \left (x \log \left (e^x x\right )+2 \log (2+x)+3 x \log (2+x)+x^2 \log (2+x)\right )}{x (2+x)} \, dx\\ &=2 x-\int \frac {\left (e^x x\right )^{\log (2+x)} \left (x \log \left (e^x x\right )+\left (2+3 x+x^2\right ) \log (2+x)\right )}{x (2+x)} \, dx\\ &=2 x-\int \left (\frac {\left (e^x x\right )^{\log (2+x)} \log \left (e^x x\right )}{2+x}+\frac {\left (e^x x\right )^{\log (2+x)} (1+x) \log (2+x)}{x}\right ) \, dx\\ &=2 x-\int \frac {\left (e^x x\right )^{\log (2+x)} \log \left (e^x x\right )}{2+x} \, dx-\int \frac {\left (e^x x\right )^{\log (2+x)} (1+x) \log (2+x)}{x} \, dx\\ &=2 x-\int \frac {\left (e^x x\right )^{\log (2+x)} \log \left (e^x x\right )}{2+x} \, dx-\int \left (\left (e^x x\right )^{\log (2+x)} \log (2+x)+\frac {\left (e^x x\right )^{\log (2+x)} \log (2+x)}{x}\right ) \, dx\\ &=2 x-\int \frac {\left (e^x x\right )^{\log (2+x)} \log \left (e^x x\right )}{2+x} \, dx-\int \left (e^x x\right )^{\log (2+x)} \log (2+x) \, dx-\int \frac {\left (e^x x\right )^{\log (2+x)} \log (2+x)}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 16, normalized size = 0.80 \begin {gather*} 2 x-\left (e^x x\right )^{\log (2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 17, normalized size = 0.85 \begin {gather*} 2 \, x - e^{\left (\log \left (x e^{x}\right ) \log \left (x + 2\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 17, normalized size = 0.85 \begin {gather*} 2 \, x - e^{\left (\log \left (x e^{x}\right ) \log \left (x + 2\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.37, size = 69, normalized size = 3.45
method | result | size |
risch | \(2 x -\left (2+x \right )^{-\frac {i \mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right ) \pi }{2}+\frac {i \pi \,\mathrm {csgn}\left (i x \right )}{2}+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x \,{\mathrm e}^{x}\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )}{2}+\ln \relax (x )+\ln \left ({\mathrm e}^{x}\right )}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 21, normalized size = 1.05 \begin {gather*} 2 \, x - e^{\left (x \log \left (x + 2\right ) + \log \left (x + 2\right ) \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.99, size = 17, normalized size = 0.85 \begin {gather*} 2\,x-x^{\ln \left (x+2\right )}\,{\left (x+2\right )}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 60.95, size = 20, normalized size = 1.00 \begin {gather*} 2 x - e^{x \log {\left (x + 2 \right )}} e^{\log {\relax (x )} \log {\left (x + 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________